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Abstract

It is well known that in multi-pulse applications in high-resolution NMR and MRI a steady state is reached for the magnet-

isation vector by the effect of relaxation in combination with the pulse repetition time. In this paper, a mathematical model is

developed to understand how the parameters of the pulse sequence and relaxation times T1 and T2 affect the behaviour of the

magnetisation vector. It will be shown that even under strong simplifying conditions an analytical analysis becomes very complex

and only an analytical solution can be found for 90� pulses and T1 = T2. For other cases a numerical approach is needed. Nev-

ertheless, the basic approach of the mathematical analysis provides a general tool for analytical multi-operator applications. Our

results provide a quantitative insight in the process by which the magnetisation relaxes towards the steady-state situation in a

multi-pulse sequence.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The problem of repeated RF pulses has been the sub-

ject of several investigations described in the literature.
Freeman and Hill [1] solved the Bloch equations for

such a case in high-resolution NMR, assuming a stea-

dy-state situation for the magnetisation. Waldstein and

Wallace [2] extended Freeman and Hill�s work and Mea-

kin and Jesson [3] simulated a variety of multi-pulse and

Fourier transform NMR experiments using a computer

program based on the Bloch equations. Adler and

Yeung [4] extended this work later, using the method
of projection operators. Recently, Randall and co-work-

er [5] looked at the problem in the context of stray field

magnetic resonance imaging (STRAFI) and in addition,

it is an important part of Blumich�s NMR Mouse [6].
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Similar work has also come up in the analysis of CPMG

sequences and chemical exchange [7], which is now being

widely applied in the field of biomolecular NMR [8–10].

Also recently there has been an increasing interest in the
use of steady-state free precession (SSFP) pulse se-

quences in fast scan MRI [11–13]. SSFP is also based

on a sequence of closely spaced radiofrequency pulses,

so that a steady-state signal is formed [14].

In this paper, we will re-examine this problem with the

goal to explore the general mathematics related to multi-

pulse sequences and to achieve an analytical calculation

to get a systematic relationship between the parameters
that describe the motion of the magnetisation vector dur-

ing the pulse sequence. It will be shown that even under

strong simplifying conditions an analytical analysis be-

comes very complex. Nevertheless, the basic approach

of the mathematical analysis is elegant and provides a

general tool for analytical multi-operator applications.

Our results provide a quantitative insight in the process

by which the magnetisation relaxes towards the steady-
state situation in a multi-pulse sequence.
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2. Theory

Let us apply a series of equidistant pulses with a rep-

etition time s at times 0,s, 2s, . . .,ns (see Fig. 1). Each

pulse rotates the magnetisation vector M over an angle

a around the x-axis of a rotating frame of reference
{x, y, z}. We will neglect out-of-resonance effects of

the applied radiofrequency field, so that the effective

radiofrequency field is always directed along the x-axis.

Also, relaxation during the pulses is neglected.

At the start of the pulse sequence, the magnetisation

vector M is along the z-axis and can be represented by

M0 ¼ M0

0

0

1

2
64

3
75; ð1Þ

where M0 is the equilibrium magnetisation.

Between the pulses the magnetisation vector M pre-

cesses freely through an angle h = Dx0s around the z-

axis, where Dx0 is the offset from exact resonance with

the radiofrequency. At the end of the free precession just

before the next pulse the magnetisation vector can be de-

scribed by [1]

Mn ¼ RzðhÞSðs; T 1; T 2ÞRxðaÞMn�1

þ ð1� E1ÞM0 ðnP 1Þ; ð2Þ

where

RxðaÞ ¼
1 0 0

0 cos a sin a

0 � sin a cos a

2
64

3
75; RzðhÞ ¼

cos h sin h 0

� sin h cos h 0

0 0 1

2
64

3
75;

Sðs; T 1; T 2Þ ¼
E2 0 0

0 E2 0

0 0 E1

2
64

3
75 and

E1 ¼ expð�s=T 1Þ
E2 ¼ expð�s=T 2Þ

:

T1 and T2 are the spin–lattice and spin–spin relaxation
times, respectively.

In principle Eq. (2) fully describes the magnetisation

vector throughout the pulse sequence, but the problem
Fig. 1. Schematic illustration of the pulse sequence used in the

analytical analysis. The sequence consists of a series of equidistant

pulses at times 0,s, 2s, . . .,ns, applied along the x-axis of a rotating

frame of reference {x, y, z}. Actually the pulses are assumed to be

extremely sharp. Mn is the magnetisation vector just before each pulse

is applied.
is that there is not a single matrix transformation from

M0 to Mn, without expressing Mn from Mn � 1. This

arises from the vector summation in Eq. (2). This prob-

lem can be solved by working in homogeneous coordi-

nates, which enables us to combine both rotations and

translations in one matrix transformation [15,16] (see
Appendix A). Therefore, we move from 3 · 3 Cartesian

coordinates to a 4 · 4 representation in homogeneous

coordinates. This now allows a compact representation

of the combined operators, which directly connects M0

and Mn:

Mn ¼ AnM0: ð3Þ
Here the operator A is given by

A ¼

E2 cos h E2 cos a sin h E2 sin a sin h 0

�E2 sin h E2 cos a cos h E2 sin a cos h 0

0 �E1 sin a E1 cos a 1� E1

0 0 0 1

2
6664

3
7775

ð4Þ
and M0 is now expressed as

M0 ¼ M0

0

0

1

1

2
6664

3
7775: ð5Þ

The challenge now is to find a general mathematical
expression for An. This is done in the following way

[17]. Let matrix K = B�1 AB be the diagonal form of ma-

trix A with diagonal values k1 to k4 which are the roots

of the characteristic equation of matrix A. Then

An ¼ BKnB�1; ð6Þ
where Kn has a simple form with diagonal values kn1 to

kn4.
In general it turns out that polynomial equations with

a degree >2 must be solved in the matrix inversion. This

enormously increases the mathematical complexity, or is

not feasible at all. Therefore, to keep the calculations
manageable, we need to confine ourselves to a special

case for which a = 90� and T1 = T2 = T, so that

E1 = E2 = E. In this case operator A reduces to

A ¼

E cos h 0 E sin h 0

�E sin h 0 E cos h 0

0 �E 0 1� E

0 0 0 1

2
6664

3
7775: ð7Þ

The calculation of k1 to k4, B and B�1 is tedious, but

straightforward. Since matrix A is not Hermitian, the in-

verse of B is not simply its adjoint, but must be calcu-

lated explicitly. The resulting matrix An is given in

Appendix B.

At this point, we make an inverse transformation

from homogeneous coordinates to 3 · 3 Cartesian coor-



Fig. 2. Location of the end points Pn of the magnetisation vector Mn

during the pulse sequence for E = 0.99 and h = 72�. The star indicates
the end point of the equilibrium magnetisation vector M1, which is

directed to the observer. All end points Pn are located on a spiral curve,

which starts at M0 and ends in M1. This spiral curve is approximately

in the plane given by Eq. (12), which is perpendicular to vector M1.

This deviation is less than 10%. Both parameters E and h (i.e., c)
influence the orientation of this plane. Parameter E has an influence on

the speed of convergence of the points to the equilibrium point. The

smaller E, the faster is the spiral convergence. Parameter h defines the

angle of rotation after each pulse around the spiral centre. In this plot

M0 is normalised to 1. The number of pulses n = 200.
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dinates to obtain an analytical representation for Mn.

This gives:

Mn ¼ M1 þ EnFn: ð8Þ
In this equation M1 is the steady-state magnetisation
vector, which is given by

M1 ¼ M0

E2 þ 2Ecþ 1

2E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1� cÞ

p

E � 2Ec� E2

1� E þ 2Ec

2
64

3
75: ð9Þ

This steady-state magnetisation agrees with the results

published by Freeman and Hill [1]. Vector Fn represents

the amplitude of the fluctuations around the equilibrium
state and is given by

Fn ¼
ð�1ÞnEM0

E2 þ 2Ecþ 1

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1� cÞ

p

E þ 2c� 1

E þ 1

2
64

3
75Pn2½ �

k¼0

cn�2kðc2 � 1ÞkC2k
n

þ
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1� cÞ

p
cþ Eð Þ

� 1� cð Þ E þ 2cþ 1ð Þ
� 1� cð Þ 1� Eð Þ

2
64

3
75 Pn�1

2½ �

k¼0

cn�2k�1 c2 � 1ð ÞkC2kþ1
n

0
BBBBBBBBB@

1
CCCCCCCCCA

:

ð10Þ

In Eqs. (9) and (10) we have made the substitution

c ¼ 1� cos h
2

: ð11Þ

Furthermore, the brackets [� � �] indicate integer values

and

Cm
n ¼ n!

ðn� mÞ!m!
is the combinatorial coefficient.
Fig. 3. Schematic illustration of the directions of the magnetisation

vector Mn during the pulse sequence for E<1. M0 is the starting

direction; M1 is the equilibrium vector. All end points Mn are located

on a spiral, which starts at M0 (oriented along the z-axis) and ends in

M1. The plane given by Eq. (12), which contains the spiral, is

perpendicular to the equilibrium vectorM1 and contains the end point

of this vector.
3. Calculational results

Calculations were performed on Eq. (8) using MAT-
LAB 6.0. In analysing the behaviour of the magnetisa-

tion vector Mn in Eq. (8), it is interesting to consider a

plane, which is perpendicular to the steady-state vector

M1 and contains the end point of this vector. This plane

is given by the equation

2E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1� cÞ

p
xþ ð1� 2Ec� E2Þy þ ð1� E þ 2EcÞz

� M0

E2 þ 2Ecþ 1

�
4E2c2 þ 4EcðE2 � E þ 1Þ

þðE2 þ 1Þð1� EÞ2
�
¼ 0: ð12Þ

Let us denote the end points of the magnetisation vector

Mn by Pn. From our calculations it follows that all

points Pn are located approximately on the plane given

by Eq. (12) (see Fig. 2). In all cases the deviation be-
tween the end points Pn and the plane is small (610%)

and decays during the pulse sequence with relaxation

time T = T1 = T2. It should be noted from Eqs. (9) and
(12) that both parameters E and h (i.e., c) influence the

orientation of the plane in the axes system {x, y, z}.

In all situations for E < 1, the length of the magneti-

sation vector Mn will decrease during the pulse sequence

due to the effect of relaxation and the end points Pn are

found to be located on a spiral curve, which goes to the

equilibrium point M1. This effect is illustrated in Fig. 3.
The effect of parameter E, i.e., relaxation time T, is that

it has an influence on the speed of convergence of the

end points Pn to the equilibrium point. The smaller

parameter E, the faster is the spiral convergence. Param-



Fig. 4. Location of the end points Pn of the magnetisation vector Mn

during the pulse sequence in the case of no relaxation (E = 1) and

h = 73�. All end points Pn are located exactly on a circle given by Eqs.

(14) and (15). The star denotes the end point of vectorO (see Eq. (14)).

The plane given by Eq. (13), which contains the circle, is perpendicular

to M and contains the end point of this vector. In this plot M0 is

normalised to 1. The number of pulses n = 200.

Fig. 5. Schematic illustration of the directions of the magnetisation

vector Mn during the pulse sequence in the case of no relaxation

(E = 1). M0 is the starting direction, which is along the z-axis. The star

denotes the end point of vector O (see Eq. (14)). The length of the

magnetisation vector Mn does not change in time, so all end points of

this vector stay on the circle on the plane given by Eq. (13). The system

never reaches an equilibrium state.
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eter h defines the angle of rotation after each pulse

around the spiral centre.

In the special case of no relaxation, i.e., for E = 1, it

can be demonstrated that all end points Pn are located

exactly on a circle in the plane, which follows from

Eq. (12):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1� cÞ

p
x� cy þ cz� cM0 ¼ 0: ð13Þ

This plane is perpendicular to the vector

O ¼ M0

1þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1� cÞ

p

�c

c

2
64

3
75 ð14Þ

and contains the end point of this vector as well as M0.

This circle has a radius
r ¼ M0ffiffiffiffiffiffiffiffiffiffiffi
1þ c

p ð15Þ

and a centre in the end point given by Eq. (14). This is

illustrated in Figs. 4 and 5.
4. Discussion

The aim of this paper is to obtain an analytical

expression for the magnetisation vector during a pulse
sequence. In our analysis the magnetisation vector Mn

is followed by taking ‘‘snapshots’’ just before the pulses

are given (Fig. 1). In fact this reduces to the problem of

finding an expression for An (see Eq. (3)), which is done

by getting a diagonal representation for the transforma-

tion operator A (Eq. (6)). Basically this is an attractive

method to find the result of a multi-operator calcula-

tion, such as appear in multi-pulse NMR experiments.
Although the calculation in Eq. (3) could be carried

out using a numerical algorithm, an analytical expres-

sion has the advantage of giving the relationships be-

tween the different parameters in an NMR experiment.

Getting a diagonal representation for the transforma-

tion operator A is only possible, however, for a rela-

tively simple form of A. This is related to the fact that

finding roots analytically is only manageable for linear
and quadratic equations. In our case, therefore, we

had to limit ourselves to 90
�

x pulses and relaxation time

T = T1 = T2. This situation refers to an NMR experi-

ment on a mobile liquid sample.

Under these conditions, the time dependency of the

magnetisation vector takes a simple general form of

relaxation towards an equilibrium state (Eq. (8)). The

relaxation time T forces the magnetisation vector to re-
lax to the steady-state situation given by M1 and the

time-dependent fluctuations decay with time to zero

with the factor En = exp(�ns/T).
As is schematically shown in Fig. 3, the relaxation

process can be described by a spiral trajectory from

the starting magnetisation vector M0 to the steady-state

vector M1, with end points of the magnetisation vector

Mn roughly in a plane that is located perpendicular to
M1 and contains the end point of M1. However, in

the case that there is no relaxation, the length of magnet-

isation vector Mn is constant and equal to M0 (Fig. 5).

Therefore the magnetisation is confined to a circular

path at the outline of the spiral on a cone with symmetry

axis given by vector O (which is M1 for E = 1). Since

the length of the magnetisation vector does not change

in time, the system never does reach an equilibrium
state, as would be expected in this case.

For other cases that T1 and T2 are not equal (but note

that T1 P T2), it can be numerically calculated from

Eq. (3) that the plane on which the end points Pn are lo-

cated deforms into a concave surface with a symmetry



2
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2
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2
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axis given by M1. This indicates that due to the relaxa-

tion processes there always is a strong driving force,

which constantly forces the magnetisation vector Mn

to be parallel to M1.

664
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Appendix A. Homogeneous coordinates

Homogeneous coordinates are used if one wants to

combine rotations, scaling, and translations in one ma-

trix transformation. An extra coordinate is introduced

to take into account the non-linearities. Homogeneous

coordinates are derived from Cartesian coordinates as

follows:

x

y

z

3
75

Cart

)

x

y

z

1

2
6664

3
7775

hom

;

where (x, y, z) is a vector in Cartesian coordinates. To

map an arbitrary vector (x, y, z, w), w „ 0 in homoge-

neous coordinates back to a vector in Cartesian coordi-

nates, we divide the first three terms by the fourth (w)
term. Thus

x

y

z

w

3
7775

hom

)
x=w

y=w

z=w

2
64

3
75

Cart

:

To show the fundamental nature of homogeneous coor-
dinates, we will illustrate its application on a translation

operation. A translation in Cartesian coordinates by

(tx, ty, tz) is a sum of two vectors:

x

y

z

3
75þ

tx
ty
tz

2
64

3
75 ¼

xþ tx
y þ ty
zþ tz

2
64

3
75:

This operation cannot be represented as a product of

multiplication of the initial vector and a 3 · 3 transfor-
mation matrix. But if we add one more coordinate to

this vector, the transformation matrix T for this transla-

tion will have the following form:

Tðtx; ty ; tzÞ ¼

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

2
6664

3
7775
and the translation operation can be easily represented

as a product of multiplication:

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

3
7775

x

y

z

1

2
6664

3
7775 ¼

xþ tx
y þ ty
zþ tz
1

2
6664

3
7775:

In a similar way, we can define and apply the transfor-

mations for scaling and rotation, as given below.

The transformation matrix of a scaling operation S

is:

Sðsx; sy ; szÞ ¼

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

2
6664

3
7775:

The matrix of rotation R about the x, y, and z-axis by a
has the following form:

RxðaÞ ¼

1 0 0 0

0 cos a sin a 0

0 � sin a cos a 0

0 0 0 1

2
6664

3
7775;

RyðaÞ ¼

cos a 0 � sin a 0

0 1 0 0

sin a 0 cos a 0

0 0 0 1

2
6664

3
7775;

RzðaÞ ¼

cos a sin a 0 0

� sin a cos a 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775:

In conclusion, homogeneous coordinates unify the treat-

ment of common graphical transformations and opera-

tions. This allows a compact representation of the

combined operations that is easy to apply. In homoge-

neous coordinates the sequential execution of any com-
bination of all three types of operations gives one

matrix, which can be presented as a product of matrixes

of the corresponding transformations. The result of

multiplication of any number of matrixes of T, S, and

R is always of the following form:

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

2
6664

3
7775:

Here the 3 · 3 upper left part of the matrix determines

the resulting rotation and scaling, and the three coeffi-

cients of the 4th column determine the resulting

translation.
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Appendix B. Matrix An

We make the following substitutions (c is given in Eq.

(11)):

r� ¼ 1
2

ffiffiffi
2

p
ð

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
� i

ffiffiffiffiffiffiffiffiffiffiffi
1þ c

p
Þ

and

W ¼ 1

E2 þ 2Ecþ 1
:

Then matrix An can be can be written in the following

way:

An ¼W

0 0 0 2E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1� cÞ

p

0 0 0 E� 2Ec�E2

0 0 0 1�Eþ 2Ec

0 0 0 1=W

2
6664

3
7775

þ En

1þ c

ð1� cÞ þ cðr2n
þ þ r2n

� Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1� cÞ

p
þ 1

2

ffiffiffiffiffi
2c

p
ðr2nþ1

þ þ r2nþ1
� Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cð1� cÞ
p

� 1
2

ffiffiffiffiffi
2c

p
ðrþr2n

� þ r2n
þ r�Þ

0

����������

����������

2
66664

. . .

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1� cÞ

p
þ 1

2

ffiffiffiffiffi
2c

p
ðrþr2n

� þ r2n
þ r�Þ

cþ 1
2
ðr2n

þ þ r2n
� Þ

�c� 1
2
ðr2

þr
2n
� þ r2n

þ r2
�Þ

0

���������

���������

. . .

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1� cÞ

p
� 1

2

ffiffiffiffiffi
2c

p
ðr2nþ1

þ þ r2nþ1
� Þ

�c� 1
2
ðr2nþ2

þ þ r2nþ2
� Þ

cþ 1
2
ðr2n

þ þ r2n
� Þ

0

���������

���������

. . .

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1� cÞ

p
þ 1

2
W

ffiffiffiffiffi
2c

p
ðE� 1Þfðr�E� rþÞr2n

þ þ ðrþE� r�Þr2n
� g

cþ 1
2
W ðE� 1Þfðr�E� rþÞr2nþ1

þ þ ðrþE� r�Þr2nþ1
� g

�c� 1
2
W ðE� 1Þfðr�E� rþÞr2n

þ r� þ ðrþE� r�Þrþr2n
� g

0

���������

���������

3
7775:

The first part is a stationary part (independent of n) and

the second part is time time-dependent (i.e., a function

of n).
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