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1. GENERAL INTRODUCTION 

1.1. Simulation as a tool for complex systems study 

1.1.1. Types of models 

Modeling is an essential part of all kinds of scientific studies of real-world objects. 

Being complex and many-sided, real objects cannot be investigated in all their manifestations; 

therefore we are forced to limit ourselves to study only a part of their properties. It means that 

from the very beginning of the study, a researcher builds in his mind a model of the object, 

which contains only its essential and interesting properties.  

A model, associated with the studied object or system, can be a physical prototype (as 

in the case of physical modeling) or a formal system of concepts and relations (mathematical 

modeling), describing the object and its behavior with the required level of details. 

Mathematical models can be divided into groups, based on the following criteria (Low 

and Kelton, 2000): 

- Method of formal description (one can distinguish analytical and simulation models); 

- Usage of time concept (static and dynamic models); 

- Presence of stochastic components and relations (deterministic and stochastic models);  

- Continuity (continuous and discrete models). 

If the relations, which form a mathematical model, are rather simple and can be 

described using mathematical analytical expressions, analytical modeling can be used. The 

advantages of analytical modeling are its universality (in relation to the tasks of its 

application) and high precision. Unfortunately, the use of analytical models is not always 

possible. Systems of high complexity are currently studied in many science disciplines 

(informatics, electronics, astrophysics, biology, chemistry, economy). These systems contain 

a significant number of interacting components (which can be systems as well), diversity of 

interconnections, have a non-linear behavior, and, as a result, they are difficult to describe and 

predict. Usually an analytical prediction of such a system is concerned with a number of 

approximations and simplifications, resulting in rather rough estimations. 

In such a case simulation modeling can be used instead of analytical modeling. Its idea 

can be reduced to two stages: 

1. Building of a formal mathematical model, up to the complexity level at which an 

analytical description can be used. 
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2. Developing of a simulation algorithm, which imitates the system behavior, taking into 

account external influences and interactions between components, and followed by the 

realization of the algorithms as a computer program.  

Using simulation modeling it is possible to study systems of almost any complexity. 

To develop a simulation model of a system, it is enough to know the partial behavior of its 

elements and to be able to simulate elementary interactions between them. Moreover, 

analytical models often operate with integral characteristics, which have no physical meaning. 

On the contrary, in simulation modeling the vast majority of the parameters has a physical 

meaning.  

1.1.2. Simulation tasks during the study of complex systems  

The tasks, to be solved by a researcher when studying complex systems can be 

roughly divided into two groups: direct and inverse tasks. 

Let us understand under a direct task the prediction of the behavior of a system based 

on a known internal state and under different external conditions. This task can be easily 

solved by simulation modeling. To predict the system behavior, one has to run the simulation 

taking into account the initial conditions of the system and external influences. Stochastic and 

chaotic systems can be characterized in this way by statistical parameters obtained from 

simulations (therefore a number of independent simulation runs are essential). Examples of 

direct tasks are: molecular dynamics simulation, weather forecast, nuclear tests in silico, etc. 

To solve the inverse task, means to find the hidden internal parameters of the system, 

or to define the structural model of a system by using external observations of the system 

behavior (experimental data). Examples of an inverse task are: analysis of experimental data, 

optimal design of a system, etc. The solution of the inverse task is much more complex than 

the direct task. For real systems the Kolmogorov’s correctness condition (unique existence) 

(Kolmogorov, 1946) does not always hold and the observed data contain noise or are of a 

stochastic nature. At the same time in practice it is not necessary to find an ideal and exact 

solution. It is often enough to find a good and most probable estimation of the parameters 

sought. 

1.1.3. Parameters identification using simulation modeling  

Simulation-based fitting (SBF) approach was developed for the determination of 

physical parameters of complex systems, which cannot by described by analytical equations. 

The general scheme of the inverse task solution by simulation modeling is given in Fig. 1.1.  
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Figure 1.1. General solution of an inverse problem by the simulation-based fitting approach. 
Thick lines show the loop of the iterative estimation of the parameters sought. 

For an experimental object (block 1) using theoretical investigation approaches 

(block 2) the simulation model (block 3) is built. Then a number of experiments is performed 

on the object (block 4) which results in a set of experimental data, block 6 (for instance – 

fluorescence spectra). The researcher knows the experimental conditions and this gives 

additional knowledge about the properties of the object (temperature, pH, viscosity, etc) – 

block 5. Using the known parameters of the object and making assumptions about the sought 

parameters (block 10), the researcher runs the simulation modeling and obtains simulated data 

(block 8) in this numerical procedure (block 7). Comparing simulated data and experimental 

ones (by calculation of the error function), the optimization procedure (block 9) changes the 

estimation of the sought parameters, and the algorithm cyclically goes to the numerical 

calculation again. This iterative search provides an estimation of the experimental parameters. 

If the model is adequate, and the inverse task is correctly formulated, the estimation found can 

be considered as a valid one. 

The approach described above has some drawbacks: 

- Significant time cost (computational expenses) – simulation modeling is usually concerned 

with a rather high computational load; 

- The existence of a number of local minima of the error function, which necessitates 

multiple runs of the SBF with different initial estimations of the parameters sought. 
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To solve these problems special methods are used, for example neural network 

simulation (“black box” model) (Nazarov et al., 2004), parallel calculations (Fox et al., 1994; 

Nazarov et al., 2002), and multipoint optimization algorithms (genetic or evolutionary 

algorithms) (Tomassini, 1999). Some of these approaches will be considered in relation to the 

current work. 

1.2. Artificial neural networks 

1.2.1. Foundation of neural networks theory  

An artificial neural network (ANN) consists of a number of simple processor 

elements, called artificial neurons. A classical artificial neuron includes a set of input weights 

wi, summation unit, and an activation function. It can have a number of inputs, but only one 

output. The value of each input of a neuron xi is multiplied by its adjustable weight coefficient 

wi. One of the inputs, which always is present in a neuron, has a constant value x0≡1. Its 

weight coefficient (w0) is called the threshold of a neuron. A bounded function of infinite 

domain is applied to the weighted and summed inputs to limit the amplitude of the output 

signal y, as shown in Fig. 1.2 (Wasserman, 1989). 

 

x1

x2

xn

×w1

×w2

×wn

Σ

1

×w0

…
FF

y

inputs weights
threshold

summation 
unit

activation 
function output

F (Σ)F (Σ)
 

Figure 1.2. Classical artificial neuron with n inputs (xi) and weight factors (wi), threshold (w0), 
non-linear activation function F and the symbolic notation of an artificial neuron (at the 
bottom). 
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Thus, the output of each neuron is calculated as  

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

n

i
ii wxFy

0
      (1.1) 

We denote the sum of the weighted inputs xiwi as Σ. 

There are a number of different activation functions: threshold function, which is 

equal to 0 for Σ ≤ 0 and 1 for Σ > 0, simple linear function, sigmoid function, hyperbolic 

tangent, and radial basis functions (for example Gaussian). The threshold function is similar 

to the nonlinear activation function of biological neurons (Wasserman, 1989). However, this 

function does not have a continuous derivative, and therefore is not often used in complex 

ANNs. The sigmoid function represented by Eq. 1.2 allows compressing possible values of Σ 

into the interval (0, 1). This function can be differentiated, and this property is widely used in 

training algorithms.  

Σ−+
=

e
y

1
1       (1.2) 

A classical ANN is build of artificial neurons as is depicted in Fig. 1.3. The 

information is given to the inputs Xi of the ANN and then propagates inside the ANN between 

the embedded neurons. If an ANN has feedback connections (see the dotted lines in Fig. 1.3) 

this propagation can be infinite in time (this property is used in such applications of ANN as 

digital filtering, control, dynamical simulation, etc.) (Kolen and Kremer, 2001). 

 

ANN
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ANN
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Figure 1.3. ANN with three inputs (Xi) and two outputs (Yj). Feedback connections are marked 
by dotted lines. 
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The functionality of an ANN is provided by a proper selection of the adjustable 

parameters wi for each neuron in the network. The selection and adjustment process is called 

“training” of the ANN. There are two general approaches for the training of an ANN – 

supervised and unsupervised (adaptive) training strategies.  

During supervised training a special data set (training set) is used, containing input 

values and network target (desired) output values. Each element of this set, which consists of 

the inputs and outputs of the ANN, is called a training pair (Stegemann and Buenfeld, 1999). 

Of course, a single training pair is not very informative, therefore a representative set of 

training pairs should be used to train a neural network. During training the inputs from the 

training pairs are provided to the inputs of the ANN and the outputs are calculated. Based on 

the deviation between the obtained and target outputs, the weights of the ANN are modified in 

compliance with the training algorithm. 

In the second, unsupervised training approach (or self-organization), the ANN 

organizes the training data and discovers its emergent collective properties without training 

pairs. In unsupervised training, the network is provided with inputs but not with desired 

outputs. The system itself must then decide what features it will use to group the input data. 

This is often referred to as self-organization or adaptation. At present, unsupervised learning 

is not well understood. This adaptation to the environment in principle can allow an ANN to 

continually learn on its own. The best known representatives of ANN’s which utilize this 

approach are Kohonen’s networks or self-organized maps (Kohonen, 1984).  

1.2.2. Multilayer perceptron 

In this work a special class of ANN called multilayer perceptron (MLP) is used. Let us 

therefore consider this type of neural networks in detail. A multilayer perceptron is an ANN 

in which the neurons are located in layers, and the outputs of the neurons of the k-th layer are 

connected only with the inputs of the neurons of layer k-1. This structure is shown in Fig. 1.4. 

The absence of feedback and lateral (inside one layer) connections results in a fast 

unidirectional propagation of information from inputs to outputs of the MLP.  

MLP has a rather good and well studied method of supervised training, called back 

propagation error, which is a kind of gradient minimization algorithm adapted for the case of 

the high dimension of the parametric space of the ANN (Hagan and Menhaj, 1994). Each 

training pair contains a vector XT of ANN inputs and a vector YT of ANN target outputs. The 

general scheme of the training algorithm is the following: 
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1. The network is initialized by giving random values (usually around ± 0.2) to all 

adjustable weight coefficients and thresholds. 

2. For each training pair (XT,YT)k put XT into the network input and calculate its output 

vector Y. 

3. Calculate the error – the discrepancy between calculated Y and desired YT.  

4. Correct the weights of the output layer based on the gradient method to decrease the 

error. 

5. Correct the weights of the hidden layers (layer by layer). 

6. Repeat steps 2–5 until the stopping criterion is met.  

In the current work the MLP, being a universal approximator, was used for “black 

box” modeling and replacement of a simulation model (see Chapter 4). The variable 

parameters of the simulation model are put to the inputs of the MLP and the simulation results 

are taken from its outputs. The selection of the MLP configuration is discussed in Chapter 4. 

 

…
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Figure 1.4. Example of a multilayer perceptron with N inputs (Xi), M outputs (Yj) and three 
layers. 

1.3. Membranes and membrane proteins  

1.3.1.  Biological membranes and their experimental models 

Lipid membranes play a key role in the structural organization and functionality of all 

cells. Membranes form intracellular compartments, and thus separate the content of a 

compartment from its environment. However this is not the only function of a membrane, 

they also regulate all interactions between compartments. Examples of such regulations are 

physical ion and molecule transport, and information transfer, due to conformation changes of 



General introduction                                                  Chapter 1 
 

 

 

18

membrane components. Moreover, many cell enzymes are located at membrane surfaces. 

Some of them catalyze transmembrane reactions even when reagents are separated by the 

membrane. Other enzymes form complexes, which perform a chain of consecutive chemical 

reactions and structure transformations, and their efficiency is increasing due to the fact that 

the enzymes are located in a two-dimensional space. Membranes also play a role in important 

biological processes, such as, replication of prokaryotic DNA, protein biosynthesis, protein 

secretion, bioenergetic processes, etc. (Gennis, 1989). 

Biological membranes can be rather complex (Fig. 1.5 А) and include a lot of 

biomolecules of different nature, for example: 

- different types of lipids (Fig. 1.5 B): phospholipids, sterols, etc; 

- membrane proteins, glycoproteins, etc. 

The main building elements of membranes are lipids (mainly phospholipids) (Gennis, 

1989) – organic molecules, which have hydrophilic “heads” and hydrophobic “tails” (Fig. 1.5 

B). This feature of the lipids results in the formation of various structures when they are 

mixed with water. Some of these structures are presented in Fig. 1.5 C–E.  

The formation of such structures is a very interesting example of self-organization of 

biomolecules. The formation of a specific structure is determined by a number of 

physicochemical factors, such as: type and concentration of lipids, temperature, pH, salts, 

mechanical way of mixing, etc.  

The most interesting model systems, imitating biological membranes, are large 

unilamellar vesicles (Fig. 1.5 D). Having rather big, approximately 50-500 nm diameter and 

hence small curvature, these liposomes can be considered as almost flat lipid bilayers in 

which membrane proteins and other membrane components are present in their original 

conformations. Moreover, the water suspension of large unilamellar vesicles has a high 

optical transparency, which is an important condition for fluorescent experiments as used in 

the present work. 

1.3.2. General characteristics of membrane proteins 

Proteins (polypeptides) are the most important type of biomolecules, which 

particularly allow the existence of life and participate in all cellular processes as biological 

regulators (enzymes), transport systems (pores), transport paths and cytoskeleton (actin), 

nanomachines aimed at assembling complex macromolecules, etc (Apell and Karlish, 2001; 

Byrne and Iwata, 2002; Pollard and Borisy, 2003; Stryer, 1978; Torres et al., 2003). 
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Figure 1.5. Biological membrane (А) (Chiras, 2002), chemical structure of phospholipids (B) 
and several structures formed by lipids when mixed with water: micelles (C), vesicle 
(unilamellar liposome) (D) and oriented bilayers (E). 
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Figure 1.6. Polypeptide link in a protein (А), and two ordered secondary structures of proteins: 
α-helix (B) and β-sheet (C) conformations (Devlin, 2006). Different types of membrane protein 
incorporation into a membrane (D). 
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Being biopolymers, proteins are built from 20 different amino acids. All amino acids 

have the structure and the type of interconnection depicted in Fig. 1.6 A. Among the main 

properties of amino acids, which determine the structure and functions of a protein, the 

following can be listed: physical size and shape of an amino acid residue, polarity, charge, 

presence of sulfur able to make sulfur bridges (via cysteines). 

The amino acid sequence of a protein is called the primary protein structure. 

Depending on this structure and polarity of the environment hydrogen bonds between the 

hydrogen of NH group and the oxygen of the C=O group may occur, which determine the 

secondary structure. One example of a secondary structure is the α-helix, which is considered 

in this work for building protein structural models (Fig. 1.6 B). This helix has a vertical step 

of 0.15 nm per 1 amino acid, and a complete turn of the helix contains 3.6 amino acids. 

Another wide spread secondary structure is the β-sheet (Fig. 1.6 C), in which two closely 

situated protein chains form mutual hydrogen bonds. 

Biological membranes contain 20 – 80% of proteins (by weight). Usually membrane 

proteins are responsible for functional activity of membranes. Different enzymes, transport 

proteins, receptors, channels, pores, etc., which are all representatives of membrane proteins, 

provide the unique functions of each membrane. The position of membrane proteins in lipid 

bilayers is quite diverse and results from the polarity of the amino acid residues (Fig. 1.6 D). 

For example, membrane proteins can pass through a membrane (transmembrane proteins), or 

lie on top of a bilayer (surface membrane proteins) (Gennis, 1989). 

The study of membrane proteins, even at the level of primary structure, was 

significantly impeded at the initial stage of research, because of their bad solubility in water. 

Today this problem has been successfully solved, due to newly developed solvents (Gennis, 

1989); however, their study still is a challenging area in structural biochemistry.  

1.3.3. Complexity of membrane protein studies 

Despite the importance of the study of membrane proteins both for general 

understanding of cellar processes and for new drugs development, up to now no universal 

methods have been developed, able to determine their structure in a general case. About 

20 000 protein structures are known today and less than 1% of them correspond to membrane 

proteins (Arora and Tamm, 2001; Torres et al., 2003; White, 2004). The up-to-date data 
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related to the structures of membrane proteins obtained are published on the web page of 

Stephen White’s group1. 

The standard approach to protein structure determination is X-ray crystallography. 

This method is extremely precise and provides information at the atomic-scale level 

(resolution up to 0.05 nm). The method analyses X-ray diffraction patterns obtained with 

protein crystals. The obvious limiting condition is the ability to prepare a protein crystal. 

Unfortunately, the preparation of crystals of membrane proteins is an extremely complex 

process. Furthermore, one should be aware of the fact that the structure of a membrane protein 

in its crystal form may not be the same as in the membrane-bound form (dos Remedios and 

Moens, 1995; Hemminga et al., 1993; Torres et al., 2003). 

The second widespread method of membrane protein structure determination is 

nuclear magnetic resonance (NMR) spectroscopy. This method is applicable, as a rule, to 

small and average-size membrane proteins and allows finding distances between atoms, if 

they are in the range of 0.1-0.5 nm. Two different experimental approaches are used for the 

study of membrane proteins. In liquid NMR spectroscopy membrane proteins are studied in 

micelles (Fig. 1.5 C) (Papavoine et al., 1998; Papavoine et al., 1997). The protein-containing 

micelles should have a relatively low molecular weight (< about 25 000 Dalton). At the same 

time the small sizes of micelles may lead to distortions of the original protein structures and 

introduce excessive dynamics (Vos et al., 2005). Another approach is the application of solid-

state NMR to study the protein-lipid system in parallel oriented dehydrated bilayers (Fig. 1.5 

E). This approach gives perfect results in the case when the studied protein is completely 

buried in the lipid bilayer and has an insignificant polar part. However, if the protein is 

situated simultaneously in the bilayer and in the outer water environment, the lack of water 

layer between lipid bilayers (~ 0.4 nm) may again lead to distortion of its structure (Vos et al., 

2005). 

The drawbacks mentioned above stimulated us to search for alternative approaches to 

study membrane proteins. Such methods are electron spin resonance spectroscopy (ESR) 

(Meijer et al., 2001b; Stopar et al., 2002) and fluorescence spectroscopy. An important 

example of the latter is Förster resonance energy transfer (FRET) spectroscopy, which is 

based on dipole-dipole interactions between fluorophores (Förster, 1965) and able to 

determine intra- and intermolecular distances (Lakowicz, 1999). This method allows 

obtaining distances in the range of 1-10 nm and therefore it can be used not only for 

                                                 
1 http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html 
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membrane protein structure determination, but also for the study of protein-protein 

interactions (Fernandes et al., 2003; Lakey et al., 1993; Li et al., 1999; Stryer, 1978).  

The present work aims at the development of FRET methods and related experimental 

data analysis, to extract relevant structural information about membrane proteins. As a test 

system for this study, the well-known bacteriophage M13 major coat protein is used.  

1.3.4.  Major coat protein of bacteriophage M13 

Bacteriophage М13 is a small filamentous virus of Escherichia coli. A single viral 

particle has a diameter about 6.5 nm and contains 2800 copies of a coat protein, which 

prevents its single-stranded DNA from damage (Marvin and Hohn, 1969; Stopar et al., 2002). 

The length of viral particles varies with the length of the DNA. The main part (98%) of the 

viral coat, which represents a hollow flexible cylinder with thickness 1.5-2 nm, consists of 

one type of protein, called M13 major coat protein.  

During the penetration of bacteriophage into E. coli, its coat is diluted in the bacterial 

cell membrane and the DNA gets into the cell. Infected E. coli cells start the replication of 

viral DNA, which stimulates the production of new viral proteins. Coat proteins are 

incorporated into the outer membrane where they stay until the exit of new viral particles 

(Stopar et al., 2002). Assembling of new viral particles occurs in the bacterial membrane with 

viral and host proteins participating in this process. Interestingly, the exit of new viral 

particles is not followed by lysis or any other damage of the outer membrane. Infected E. coli 

continues the production of viral particles during its lifetime. The scheme of viral invasion 

and new viral particles exit is described in detail in (Hemminga et al., 1993). This allows to 

get an almost unlimited quantity of viral proteins from an infected culture. Moreover, it 

allows to produce large quantities of mutants of coat proteins by mutations in viral DNA 

(Sambrook et al., 1989). 

After integration in the E. coli membrane, the viral major coat protein adopts a 

transmembrane configuration. The protein consists of 50 amino acid residues (Fig. 1.7 A) and 

has a hydrophobic region (positions 21-39). In this figure the colors represent the polarity of 

the amino acid residues, in accordance to the scale of White and Wimley (White and Wimley, 

1999). 
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Figure 1.7. Major coat protein of bacteriophage M13. Amino acid sequence of the protein and 
polarity of amino acid residues (based on the scale of White and Wimley (White and Wimley, 
1999)): a darker color corresponds to a more hydrophobic residue (A). Protein structures 
determined in: viral particle (Marvin, 1998) (B), lipid micelles (Papavoine et al., 1998) (C), and 
dehydrated bilayers (Marassi and Opella, 2003) (D). 

The knowledge of its primary structure and the possibility of site-directed mutagenesis 

has made this protein an excellent test and reference system to study fundamental protein-

lipid interactions and its structure when embedded in a membrane. Unfortunately, despite a 

lot of studies on this subject, the discussions about the precise structure of M13 coat protein 

still continue. It is known that in the viral particle the protein represents a slightly curved α-

helix (Fig. 1.7 B), as was found by X-ray crystallography (Marvin, 1998). This structure is 

very stable, as it is necessary to protect the viral DNA from external influences. In detergent 

micelles (Fig. 1.5 C) by using NMR (Papavoine et al., 1998), however, the protein is found to 

be in a very dynamic state (Fig. 1.7 C). However, as was mentioned before, micelles have 

small sizes, and their high curvature can distort the original structure of membrane proteins 

(Vos et al., 2005). Other authors, who studied the coat protein in a dehydrated bilayer 

(Marassi and Opella, 2003) found a rigid L-shape structure (Fig. 1.7 D). As was mentioned in 

(Vos et al., 2005), dehydrated bilayers may also introduce artifacts, because of a lack of water 
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layer between the lipid bilayers (approximately 0.4 nm). Therefore, it seems worthwhile to 

study the M13 major coat protein in vesicles, which most closely mimic a biological 

membrane.  

Several studies have been devoted to the study of the dynamics and membrane 

embedment of M13 protein using ESR spectroscopy (Meijer et al., 2001b; Meijer et al., 

2001a; Stopar et al., 2002; Stopar et al., 2005; Stopar et al., 2006b). As a result of these 

studies it was found that this protein most probably consists of two stable α-helices at amino 

acid positions 7-16 and 25-45. The second α-helix represents the transmembrane protein 

domain and the first one is partially situated in water, partially – in the lipid head group 

region.  

The protein has also been studied with fluorescence spectroscopy. The work of 

Fernandes et al. (Fernandes et al., 2004; Fernandes et al., 2003) was aimed on protein lipid 

interactions and protein-protein associations. As a result it was qualitatively determined that 

the protein does not show a tendency to aggregate and its distribution in DOPC:DOPG 

bilayers can be considered as uniformly random. Koehorst et al. were the first to study the 

position and orientation of M13 coat protein in bilayer using fluorescence spectroscopy 

(Koehorst et al., 2004).  

1.4. Photophysical processes and fluorescence spectroscopy 

1.4.1.  The method of fluorescence spectroscopy  

Fluorescence spectroscopy is a powerful tool, which allows the study of the structure 

and dynamics of molecular systems. Examples of experimental systems, successfully studied 

with fluorescence techniques are: polymers, solutions of surfactant species, thin films, 

biomembranes, proteins, nucleic acids, and living cells. The diversity of physical parameters, 

which can be characterized by fluorescence, is astonishing: intra- and intermolecular 

distances, polarity, viscosity, structural ordering, molecular mobility, and electric potential 

(Valeur, 2001). One of the main advantages of  the fluorescence method is its high sensitivity. 

For instance, modern techniques allow the tracking of a single fluorescent molecule (Keller et 

al., 1996).  

Fluorescent probes (fluorophores) are needed to perform fluorescence experiments. 

These fluorophores can either be introduced artificially into the system under investigation, or 

can be originally present (for example, the fluorescent amino acid tryptophan is widely used 

in protein studies).  
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In this section I will consider some basic principles of photophysical processes 

occurring in experimental systems when studied by fluorescence methods. Special attention 

will be given to the Förster resonance energy transfer (FRET) technique. In addition, the 

phenomenon of energy transfer by dipole-dipole resonance interaction will be considered in 

detail.  

1.4.2. Resonance energy transfer 

Consider a simplified diagram of energy levels (Jablonski’s diagram) for two 

fluorophores (called donor and acceptor, see Fig. 1.8 А). When the donor absorbs a photon of 

a proper wavelength it goes to one of the excited states (S1 or S2 in Fig. 1.8 A). The 

absorption of a photon is a very fast process, which takes ~10–15 s. Then a fast relaxation to 

the lowest exited state level S1 occurs. This process is called internal conversion (in the figure 

its rate is noted as kIC) and the corresponding time scale is ~10-12 s. Because the usual lifetime 

of the S1 state is in the range from 10-9 to 10-8 s, internal conversion occurs before other 

processes take place, such as relaxation to S0, or energy transfer (Lakowicz, 1999).  
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Figure 1.8. Simplified scheme of energy levels (Jablonski’s diagram) for the donor-acceptor 
pair (A) and schematic normalized spectra for donor and acceptor (B). In figure (A) S0 denotes 
the ground states of donor and acceptor, S1,2 – excited states, kIC corresponds to the rate of 
internal conversion, kD, kA – donor and acceptor sum relaxation rates, kET – the rate of energy 
transfer. In figure (B) curves 1 and 2 represent the absorption and emission spectra of the donor; 
3 and 4 are the absorption and emission spectra of the acceptor. The donor-acceptor spectral 
overlap area is indicated via hatching. 
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An isolated fluorescent molecule, being in the S1 state can relax to S0 by emission of a 

photon (fluorescence) or via radiationless relaxation. In the figure the sum rates of relaxation 

for isolated fluorophores are denoted as kD and kA. In the case of isolated non-interaction 

molecules these rates are in inverse proportion to the life times in the excited states τD and τA 

(Lakowicz, 1999).  

When two fluorescent molecules (donor in excited state and acceptor in ground state) 

are close to each other and their spectra overlap as is shown in Fig. 1.8 B, the probability of 

donor-acceptor energy transfer exists. Consider an interaction between these two molecules 

from the quantum physics point of view. Let us assume for simplicity, that only one electron 

from the donor and one electron from the acceptor are participating in such an interaction. 

The wave function for the initial state (only the donor is excited) Ψ0 and the final sate (only 

the acceptor is excited) Ψ1 can be written in the following form (Valeur, 2001): 

( )

( ))1()2()2()1(
2

1

)1()2()2()1(
2

1

**1

**0

ADAD

ADAD

ΨΨΨΨΨ

ΨΨΨΨΨ

−=

−=
,   (1.3) 

where wave functions of the electron of the donor and acceptor are marked by D and A, 

respectively. The numbers 1 and 2 mark the electron (electron 1 initially is located near the 

donor, and 2 near the acceptor), and the asterisk denotes the excited state. 

The interaction matrix element, describing the coupling between the initial and final 

states can be written as  

10 ΨΨ VU = ,      (1.4) 

where V is the perturbation part of the total Hamiltonian of the system VHHH AD ++= ˆˆˆ . The 

interaction given by Eq. 1.4 can be written as a sum of two components  

exc

ADADADAD

UU

VVU

−=

=−= )1()2()2()1()2()1()2()1( **** ΨΨΨΨΨΨΨΨ
(1.5) 

The first component Uc , characterizes the Columbic interaction between the 

multipoles. This component results in a transition of the electron of the donor to the ground 

state with a simultaneous transition of electron of the acceptor to the excited state. The second 

component Uex , describes the physical exchange of electrons between the donor and acceptor. 
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This interaction is a quantum-mechanical phenomenon caused by the symmetry of the wave 

functions with respect to the spin and coordinates exchange for the two electrons. 

The Coulombic interaction can be divided into dipole-dipole, dipole-quadrupole, 

quadrupole-quadrupole, and other types of multipole-multipole interactions. However in the 

vast majority of cases a first-order approximation is used, taking into account only dipole-

dipole interaction Udd between the emission dipole moment of the donor MD and the 

excitation dipole moment of  the acceptor MA (Förster, 1948; Lakowicz, 1999; Valeur, 2001). 

The dipole-dipole compound of the interaction can be written in the following form 

( )( )
53 3

rr
U DAAD

dd
rMrMMM ⋅⋅

−
⋅

= ,   (1.6) 

where r is the vector connecting the centers of donor and acceptor. Expression (1.6) can be 

rewritten if the angles between the vectors are taken into account: 

( )ADDA
AD

dd r
aU θθθ coscos3cos3 −=

MM
,   (1.7) 

Here а is a coefficient that depends on the selection of the measuring system (for example, if 

Udd is in cm-1, the distance is in nm, and the moments are in debye, a = 5.04), θDA is the angle 

between the dipoles, and θD, θA are the angles between vector r and the dipoles of the donor 

and acceptor, respectively. The value of Udd can be significant up to a distance of 8-10 nm 

(dos Remedios and Moens, 1995; Lakowicz, 1999; Valeur, 2001).  

The theory that describes this mechanism of energy transfer was developed in detail 

by Förster and published in 1948 (Förster, 1948). It should be mentioned, that the dipole-

dipole approximation is valid for the case of point dipoles, i.e. when the donor-acceptor 

distance is much larger than the physical size of the molecule groups. The distance range 

where this theory is applicable is approximately 1-10 nm. 

The second contribution in Eq. 1.5, describes the exchange mechanism (Uex). This 

means a physical electron exchange and is possible only when the electron clouds are 

overlapping, in other words when physical contact between the donor and acceptor occurs. 

Therefore this contribution is relevant only at short distances, because the electron density 

decays exponentially outside a molecule. For two electrons at a distance r12 the spatial part of 

the interaction can be written as: 
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where ΦD, ΦA – are the contributions of the spatial wave functions into the total wave 

functions ΨD, ΨA (that includes spin functions as well). 

The energy transfer rate, mentioned in the beginning of this section, can be obtained 

for each type of interactions using Fermi’s Golden Rule:  

ρπ 22 UkET
h

= ,     (1.9) 

where ρ is a measure of the density of the interacting initial and final states, as determined by 

the Franck-Condon factor and is related to the overlap integral between the emission spectrum 

of the donor and the absorption spectrum of the acceptor (Valeur, 2001).  

By substituting Eqs. 1.7 and 1.8 into Eq. 1.9, it is possible to obtain expressions for the 

rate constants of dipole-dipole and exchange mechanisms.  

In the case of dipole-dipole interaction for the isolated donor-acceptor pair the rate 

constant of energy transfer can be written as  
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Here we assume that the donor-acceptor distance r is constant during the donor lifetime in the 

excited state. R0 is the so-called Förster distance, which is equal to the distance at which 

excitation can be transferred to the acceptor with probability 0.5, i.e. when kET = kD. This 

constant is calculated using spectroscopic data for the participating fluorophores. The 

expression for R0 is as follows  

( ) λλλελ
π

κ dF
nN

QR AD
A

D ∫
∞

=
0

4
45

2
6
0 )()(

128
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In this expression QD is the quantum yield of the isolated donor (i.e. the probability of 

fluorescence after donor excitation), NA is the Avogadro constant, n is the refractive index of 

the donor-acceptor intervening medium (Knox and van Amerongen, 2002), FD the normalized 

area of the donor emission spectrum, εA is the acceptor molar extinction coefficient, and κ2 is 

an orientation factor, dependent on the directions of the transition dipoles as in (1.7):  



General introduction                                                  Chapter 1 
 

 

 

30

ADDA θθθκ coscos3cos −= .    (1.12) 

The orientation factor κ2 is the most not obvious parameter of Eq. 1.9 (Dale et al., 

1979). It can vary from 0 tо 4 (collinear dipoles). A dynamical averaging of κ2 has to be taken 

into account, if the speed of dipole reorientation is significant in comparison with the donor 

life time. For sufficiently fast isotropic rotation of dipoles this results in κ2 = 2/3 (Dale et al., 

1979). In many experimental works it is shown that even a small mobility of fluorophores 

(when it is accompanied by random orientation of moments) allows the use of the value of 

κ2 = 2/3 (dos Remedios and Moens, 1995; Kamal and Behere, 2002; Lakshmikanth et al., 

2001; Loura et al., 1996). 

One can obtain the exchange rate by substituting Eq. 1.8 into 1.9:  
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where r is the donor-acceptor distance, L the average Bohr radius (0.1–0.2 nm for aromatic 

molecules), *
Aε  the normalized absorption spectrum of the acceptor, and K is a constant not 

related to spectroscopic properties. Because it is hard to determine K experimentally, it is hard 

to use the exchange effect for quantitative data analysis (Valeur, 2001). 

1.4.3.  Resonance energy transfer in case of an ensemble of molecules 

In our work only one of above mentioned mechanisms of energy transfer will be taken 

into account, namely dipole-dipole. This mechanism often prevails under experimental 

conditions in the study of biomolecular systems, such as proteins, DNA, and membranes (dos 

Remedios and Moens, 1995; Lakowicz, 1999; Loura et al., 1996). Mainly photosynthetic 

complexes, for which much more complex excitonic energy transfer models are valid, can be 

considered as exceptions to this rule (van Amerongen et al., 2000). Therefore, in the 

following, kET will reflect the rate constant for the dipole-dipole compound of resonance 

energy transfer. 

One of the important characteristics of energy transfer is energy transfer efficiency. 

Physically, energy transfer efficiency is the mean probability of energy transfer from a donor 

to an acceptor. For an isolated donor-acceptor pair, separated by distance r, the efficiency can 

easily be calculated using relaxation rates: 
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If the fluorescence of an isolated donor fD represents a mono-exponential decay with 

rate kD = τD
-1 , as shown in Eq. 1.15, the fluorescence of the donor in a donor-acceptor pair is 

mono-exponential as well, and has the same initial intensity FD, see Eq. 1.16. 

[ ]tkFtf DDD −= exp)(      (1.15) 
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If the system contains an ensemble of donors and acceptors, for each donor all 

pathways of deexcitation should be taken into account. Therefore the energy transfer 

efficiency can be calculated as an average for all donors using the expression 
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Here index i reflects donor enumeration, j the acceptor enumeration, ND, NA are the 

numbers of donors and acceptors in the system, respectively, and 
DN

...  indicates averaging 

over the donor ensemble. Correspondingly, the precise expression for donor fluorescence is 

written as follows. 
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Obviously the application of Eqs. 1.17 and 1.18 is possible only for a relatively small 

number of fluorophores in the system. Therefore analytical models have been developed, 

which describe donor fluorescence in the presence of uniformly distributed acceptors 

(Blumen et al., 1986; Davenport et al., 1985; Dewey and Hammes, 1980). All analytical 

expressions are concerned with simplifications and approximations. In the model of Blumen 

et al. (Blumen et al., 1986), represented by Eq. 1.19, donor and acceptor molecules have 

infinite small sizes and are uniform randomly distributed in a d-dimensional space: 

( ) ( )[ ]6
06/1exp)( d

D
d

ddADDDA tkRVdtkFtf ⋅⋅⋅⋅−−−= σΓ , (1.19) 
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where d is the dimensionality of the system, Γ is the gamma function, σdA is the acceptor 

density for the dimensionality d (for planar systems – surface density, for the space – 

concentration), and Vd is the volume of a d-dimensional sphere of unitary radius (for a planar 

system Vd = π, for the space Vd = 4π/3).  

Independently of this universal expression Davenport et al. (Davenport et al., 1985) 

proposed an analytical solution for a layered planar system (see Eq. 1.20). In this system 

donors and acceptors are distributed in two parallel planes separated by the distance h 

(identical molecules in the same plane). Donors have sizes, or a donor exclusion distance RE, 

which means that RE is the minimal distance between acceptors and the donor projection on 

the acceptor plane. 
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For both analytical solutions the efficiency of energy transfer is calculated using the 

following expression  
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which simplifies in the case of mono-exponential donor decay to 
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1.4.4.  Methods of energy transfer efficiency determination 

The simplest way of energy transfer efficiency determination is given by Eq. 1.21. 

During experiments the overall fluorescence intensity of the donors in presence (experimental 

sample) and absence (reference sample) of acceptors should be measured. If it is hard to keep 

the donor concentration constant in both samples, the following normalization should be used:   
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where СD is the donor concentration in the reference sample, and СDА the experimental one. 

The detected fluorescence of donors in the presence of acceptor fDA should originate solely 

from donors and be free from acceptor fluorescence. This method is applicable for both 

steady-state and time-resolved fluorescence spectroscopy. 

Another method, providing information about energy transfer efficiency, is based on 

the detection of acceptor excitation (Lakey et al., 1993). Consider steady-state fluorescence 

(emission) of acceptors λ
AF , where λ is the excitation wavelength. Let us denote ΘA as the 

part of the energy that is absorbed by the acceptor due to direct excitation and ΘD the part of 

energy that is absorbed by donors and then transferred to acceptors. Then the excitation 

spectrum of an acceptor can be written as: 

( )γΘΘ λλλ EF DAA += ,      (1.24) 

where  γ is some experimental factor, including the optical path of the beam in the sample, 

excitation radiation intensity, etc. By calculating the fluorescence of the sample at two 

wavelengths, which correspond to maximal donor λD and acceptor λA absorptions, it is 

possible to obtain the system of Eq. 1.25, originating from Eq. 1.24. The energy transfer 

efficiency E can easily be evaluated from it. In Eq. 1.25 Θ is given in terms of molar 

extinction coefficients ε of the donor and acceptor at different wavelengths multiplied by the 

concentrations СD and CA of donors and acceptors, respectively.  
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Often for real systems the absorption of the donor at the acceptor excitation 

wavelength is very small, thus 0≈A
D
λε . In this case the expression for the energy transfer 

efficiency, calculated from Eq. 1.25 is   
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1.5. Application of FRET to protein studies 

From the very beginning, FRET was aimed first of all to distance determination in 

proteins and their complexes. The theory of FRET was initially developed and its 

applicability overviewed by Förster (Förster, 1948, Förster, 1965). Later, Stryer and 

Haughland (Stryer and Haugland, 1967) studied, amongst others, synthetic polypeptides 

labeled with naphthyl and dansyl. The authors experimentally demonstrated the theoretical 

dependency between energy transfer efficiency and donor-acceptor distance (see Eq. 1.14). In 

the next review of Stryer (Stryer, 1978) the wide possibilities of FRET spectroscopy for 

protein structure determination were demonstrated. Also the classical works of Vanderkooi 

(Vanderkooi, 2002; Vanderkooi et al., 1977) were aimed at fluorescent and phosphorescent  

methods for protein investigation.  

Most of the FRET applications can be conditionally divided into three groups. The 

first one is related to direct intramolecular distance determination between protein sites or 

between proteins in their complexes (Almeida and Opella, 1997; Lakshmikanth et al., 2001; 

Torres et al., 2003). The second application is related to the study of specific and non-specific 

binding of different molecular formations. The studies aimed at the determination of the 

spatial distribution of biomolecules can also be related to this group (Davenport et al., 1985; 

Fernandes et al., 2003; Förster, 1948). Finally, the third application is the study of macro 

objects (organelles, cells) by fluorescence microscopy. Usually, special luminescent proteins 

(yellow, green and cyan fluorescence proteins) are used for this. Such kind of FRET 

applications can, for instance, be found in (Rao and Mayor, 2005; Vogel et al., 2006). 

The important advantage of FRET in the study of proteins is the almost complete 

control over amino acid sequence. Especially, this holds for small proteins, which can be 

synthesized artificially (Hesselink et al., 2005; Killian, 2003; Sparr et al., 2005), or proteins 

obtained from bacterial cultures (Spruijt et al., 1989). This allows site-specific modification of 

the amino acid sequence, and therefore site-directed labeling. The method of site-directed 

labeling can give a lot of useful structural information, especially in the study of membrane 

proteins.  

1.6. Short overview of data analysis methods for fluorescence 
spectroscopy 

As was mentioned before, initially the main application of FRET spectroscopy was the 

determination of intramolecular distances for donor-acceptor pairs. However, the application 

of expressions for analysis of energy transfer in more complex systems was hampered, 
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because of the complexity of the mathematical models for energy transfer. The main 

mathematical models at this stage were Eqs. 1.14 and 1.16. For this reason, in many studies 

only qualitative information was used. 

In the 80s several groups published analytical equations, which describe energy 

transfer in three dimensions (Blumen et al., 1986) or two dimensions (Davenport et al., 1985; 

Dewey and Hammes, 1980) (see Eqs. 1.19, 1.20) in the previous section). These expressions 

are still used up to now (Fernandes et al., 2004; Loura et al., 1996) for analysis of 

intermolecular energy transfer. However, based on the investigation reported in this thesis, 

together with the work of Berney (Berney and Danuser, 2003), Eqs. 1.19 and 1.20 have to be 

used carefully, taking into account the approximations which have been made for their 

derivation (dimensionless acceptor molecules, uniform random distribution of fluorophores, 

low excitation intensity, absence of any interactions in the system except dipole-dipole 

coupling between donor and acceptor).  

Quite often researchers do not build the detailed model of the processes in the system, 

and use an integral analytical description instead. In this case, for instance, the law of donor 

fluorescence decay given by Eq. 1.18 can be approximated by the sum of several exponents. 

In practice, for a rather precise description of any decay, it is sufficient to use 4-10 

exponential components (Hiriayama et al., 1990). However this approximation gives only a 

rough estimation of energy transfer and can be used mainly for a qualitative description of 

photophysical processes.  

From the 90s a new powerful tool became available that enabled the study and 

analysis of photophysical processes: computer simulation. The application of computer 

simulation to FRET problems was developed in the papers by Andrews, Berberan-Santos and 

Demidov (Andrews and Demidov, 1999; Berberan-Santos and Valeur, 1991; Demidov and 

Borisov, 1993). Computer simulation does not only allow the analysis of complex molecular 

systems (Frederix et al., 2002; Yatskou et al., 2001a; Yatskou et al., 2003), but also provides 

the possibility to check the quality of previously developed analytical models (Berney and 

Danuser, 2003).  

Speaking about methodological aspects of experimental data analysis, the method of 

global data analysis should be mentioned. The method applies a simultaneous analysis of all 

available experimental data by a single model. Partial quality factors are combined into a 

global criterion. This methodology was first applied to fluorescence data by Beechem et al. 

(Beechem and Brand, 1985; Beechem and Brand, 1986; Beechem and Haas, 1989). The 

effectiveness and stability of this approach was demonstrated in their papers. It allows 
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avoiding local minima (or at least decreasing their number) during fitting and increases the 

noise stability. Global data analysis was used in the current work as well. The numerical tests 

performed on synthetic data confirm the effectiveness of the global analysis approach.  

1.7. Outline of the Thesis 

This thesis is devoted to the development of advanced methods for analysis of 

fluorescence data, based on simulation modeling, global analysis approach, and artificial 

neural networks. Especially the advantages and problems of the simulation-based fitting 

(SBF) approach for fluorescence data analysis are considered. The methods and algorithms 

developed are applied in particular to study the structure and embedment of membrane 

proteins in artificial membranes.  

In Chapter 2 the methodologies of global analysis and SBF are applied to obtain 

information about the position and orientation of M13 major coat protein in DOPC:DOPG 

vesicles. The spatial model for the protein-lipid system is described and a full mathematical 

description of the energy transfer processes in the studied system is presented. Furthermore an 

algorithm for the analysis of SBF solution sets is provided. The resulting physical parameters 

that describe the embedment and orientation of the protein in the membrane, such as protein-

protein aggregation, protein depth, tilt angle, and tilt direction, are in good accordance with 

previously reported values. 

The methodology described in Chapter 2 is further extended in Chapter 3. In addition 

to the global analysis and SBF information was used, obtained from the fluorescence Stokes 

shift. A novel fuzzy “rules” approach was used to filter the resulting solutions, based on the 

position of the fluorescence maximum for different label positions. This analysis results in an 

improved structure of the M13 major coat protein that turns out to be close to a single helix 

from amino acid residue 10 to 50.  

Chapter 4 is aimed at the enhancement of simulation-based fitting by an artificial 

neural networks (ANN) simulation. The main idea of the improvement is the replacement of 

the “white-box” simulation model, by a “black-box” neural-network model during the fitting 

procedure. The method was tested on the simulation model for Förster (or fluorescence) 

resonance energy transfer (FRET) data in a protein-lipid system. It was found that this method 

is a valid approach and can be applied when the number of variable (fitted or changed during 

experiments) parameters of the simulation model is less than (or in some cases equal to) 6. 

The method results in a considerable speeding up of the simulation (about a factor of 104). 
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Finally, Chapter 5 demonstrates the possibility of a direct application of ANNs to 

spectral analysis. In this chapter ANN was applied to spectra obtained in intracavity laser 

absorption spectroscopy. It was shown that ANN is able to deal quite well with stochastic 

noise and frequency-domain irregularities of the laser pulse and offers improved quality of the 

analysis. 
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ABSTRACT 

A new formalism for the simultaneous determination of the membrane embedment 

and aggregation of membrane proteins is developed. This method is based on steady-state 

Förster (or fluorescence) resonance energy transfer (FRET) experiments on site-directed 

fluorescence labeled proteins in combination with global data analysis utilizing simulation-

based fitting. The simulation of FRET was validated by a comparison with a known analytical 

solution for energy transfer in idealized membrane systems. The applicability of the 

simulation-based fitting approach was verified on simulated FRET data and then applied to 

determine the structural properties of the well-known major coat protein from bacteriophage 

M13 reconstituted into unilamellar DOPC:DOPG (4:1 mol/mol) vesicles. For our purpose, the 

cysteine mutants Y24C, G38C, and T46C of this protein were produced and specifically 

labeled with the fluorescence label AEDANS. The energy transfer data from the natural 

tryptophan at position 26, which is used as a donor, to AEDANS were analyzed assuming a 

helix model for the transmembrane domain of the protein. As a result of the FRET data 

analysis the topology and bilayer embedment of this domain were quantitatively 

characterized. The resulting tilt of the transmembrane helix of the protein is 18 ± 2°. The 

tryptophan is located at a distance of 8.5 ± 0.5 Å from the membrane center. No specific 

aggregation of the protein was found. The methodology developed here is not limited to M13 

major coat protein and can be used in principle to study the bilayer embedment of any small 

protein with a single transmembrane domain. 
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2.1. Introduction  

Membrane proteins play an important role in almost all cell activities. They perform a 

staggering range of biological reactions including respiration, signal transfer, molecular and 

ion transport (Byrne and Iwata, 2002). However, the structure determination of membrane 

proteins is still at the frontier of structural biology. While 30-40% of all proteins are 

membrane proteins, yet less than 1% of the known protein structures are for membrane 

proteins (Arora and Tamm, 2001; Torres et al., 2003). (For the most recent state for 

membrane proteins of known structure, see: 

http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html.) The complexity and delicacy of 

membrane-protein systems substantially impede the application of standard methods of 

protein study, such as X-ray crystallography and NMR (dos Remedios and Moens, 1995; 

Torres et al., 2003). Furthermore, these techniques are aimed at short-range structural 

information, and seem to be not useful for the study of long-range interactions, for instance in 

the case of protein association and clustering.  

These factors impel to find other approaches to study proteins incorporated into lipid 

bilayers. A successful alternative is Förster (or fluorescence) resonance energy transfer 

(FRET) spectroscopy (Förster, 1965; Lakowicz, 1999; Stryer, 1978). This technique provides 

distance information within a range of 10-100 Å, which is sufficient to study the structure of 

membrane proteins and their complexes. FRET spectroscopy has been successfully applied to 

several problems in biology as a means of estimating intra and intermolecular distances in 

macromolecular systems, especially proteins (Lakey et al., 1993; Li et al., 1999; Stryer, 

1978). The idea of FRET is labeling of the macromolecules with fluorescent labels of two 

kinds – a donor and an acceptor, and analysis of radiationless dipole-dipole energy transfer 

(Förster, 1948) between them. One of the advantages of such an approach is that several 

natural amino acid residues of a protein, such as Trp and Tyr, can be utilized as fluorescent 

labels (dos Remedios and Moens, 1995; Fleming et al., 1979).  

Despite the elegant analytical models for a uniform planar donor-acceptor distribution 

that were developed two decades ago (Davenport et al., 1985; Dewey and Hammes, 1980; 

Wolber and Hudson, 1979), the complexity of protein-lipid systems hampers and limits an 

analytical interpretation of FRET data (Berney and Danuser, 2003; Frederix et al., 2002). For 

example, in the present work several numerical tests were performed to study the applicability 

of analytical models for the analysis of membrane protein systems. It was found that 

analytical expressions give incorrect results when the size of acceptor-host molecules is 
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comparable to the Förster distance of the donor-acceptor pair. On the other hand, simulation 

modeling of photophysical processes in an experimental system during a fluorescence 

measurement was proven to be a powerful alternative to analytical modeling, not restricted to 

special conditions (Berney and Danuser, 2003; Frederix et al., 2002; Nazarov et al., 2004; 

Yatskou et al., 2001a). The standard approaches to simulate FRET effects in complex systems 

are various Monte Carlo simulation schemes (Berney and Danuser, 2003; Frederix et al., 

2002; Yatskou et al., 2001a). However, Monte Carlo simulation modeling is a very time-

consuming operation. Furthermore, a time-resolved approach is not needed for the analysis of 

steady-state FRET data.  

The goal of the current work is to develop and test a methodology for the analysis of 

steady-state FRET data to build a low-resolution structural model of a protein-membrane 

system with a quantitative characterization of its parameters. To perform this goal a steady-

state FRET model is built and utilized in a simulation-based fitting (SBF) approach to 

approximate the experimental data by their simulated analogues (Nazarov et al., 2004; 

Yatskou et al., 2001a). By comparison with standard analytical data fitting techniques, 

simulation modeling has the advantage that it operates with the physical parameters of the 

system itself and gives a direct insight in how they affect the experimental characteristics of 

the system. 

The methodology developed is tested on a well-known coat protein from 

bacteriophage M13. During a part of its life cycle, the coat protein is stored as a membrane 

protein in the E. coli host. Therefore it is an excellent model system to study fundamental 

aspects of protein-lipid and protein-protein interactions (Stopar et al., 2003). This single 

membrane-spanning protein consists of 50 amino acid residues and has mainly an α-helical 

conformation. The protein has been extensively studied in model membrane systems by 

several biophysical techniques (Fernandes et al., 2004; Fernandes et al., 2003; Glaubitz et al., 

2000; Koehorst et al., 2004; Marassi and Opella, 2003; Meijer et al., 2001b; Papavoine et al., 

1998; Papavoine et al., 1997; Spruijt et al., 2000; Stopar et al., 2002; Stopar et al., 2003; Vos 

et al., 2005). For FRET studies, the natural single tryptophan residue of the protein at position 

26 (Trp-26) was used as a donor label. To introduce an acceptor label to the protein, a number 

of mutants, containing unique cysteine residues at specific positions, was produced. The 

cysteine residues were labeled with the fluorescent label N-(acetylaminoethyl)-5-

naphthylamine-1-sulfonic acid (AEDANS) (Spruijt et al., 2000). This label was used as an 

acceptor. To separate intra and intermolecular energy transfer contributions, we performed 

titration experiments in which we added wild-type protein to mutant proteins at different L/P 
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ratios. Both unlabeled mutant and wild-type protein can be considered spectroscopically 

identical as donor-containing molecules without acceptor label. The labeled mutants contain 

both a donor and acceptor. In a fluorescence excitation experiment one can optically select the 

labeled mutant proteins by monitoring the acceptor fluorescence. In a fluorescence excitation 

spectrum FRET can be deduced from the enhancement of acceptor fluorescence at the donor 

absorption wavelength. Upon addition of donor containing wild-type protein the 

intermolecular energy transfer component is increased exclusively. 

In this paper we focus our analysis on the transmembrane domain of the protein, 

which was recently found to be in an almost perfect α-helix conformation (Koehorst et al., 

2004; Vos et al., 2005). To take into account the membrane embedment of the proteins and 

possible protein aggregation, a model of a protein-lipid bilayer system is generated. This 

model is then used in an SBF approach to analyze the fluorescence data. To make the SBF 

procedure more effective a global analysis strategy is applied, in which all data are analyzed 

simultaneously. This approach provides information about the membrane embedment of the 

transmembrane protein domain in terms of protein depth, tilt angle, and protein association. 

2.2. Experimental 

2.2.1.  Sample preparation 

The lipid bilayer systems were prepared from dioleoylphosphatidylcholine (DOPC, 

18:1PC) and dioleoylphosphatidylglycerol (DOPG) lipids in a 4:1 molar ratio, denoted as 

DOPC:DOPG. DOPC was purchased from Avanti Polar Lipids and DOPG was purchased 

from Sigma.  

Site-specific cysteine mutants of M13 major coat protein were prepared, purified and 

labeled with AEDANS (Molecular Probes) as described previously (Spruijt et al., 2000). 

Wild-type protein and AEDANS-labeled M13 coat protein mutants were reconstituted into 

phospholipid bilayers as reported earlier (Spruijt et al., 1989).  

For this study we used AEDANS-labeled cysteine mutants of M13 coat protein with 

the cysteine residue at positions 24 (Y24C), 38 (G38C), and 46 (T46C). Titration experiments 

were performed in which the wild-type protein concentration was increased, whereas the 

mutant concentration was kept constant. The sample conditions for these titrations are given 

in Table 2.1. For the purpose of correcting the fluorescence results (see εA
290/εA

340 in Eq. 2.1), 

we also used a mutant (Y21A/Y24A/W26A/G23C) having the AEDANS labeled cysteine at 

position 23, in combination with a threefold mutation of the tryptophan at position 26 and the 
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tyrosines at positions 21 and 24 into alanines. The labeling efficiency of the mutants having 

the AEDANS label at position 24, 38, and 46 was determined as reported previously (Spruijt 

et al., 1996) and amounted to 62, 55, and 69%, respectively. The labeling efficiency is 

explicitly taken into account in Table 2.1 in the ratio of the number of unlabeled to labeled 

proteins (rul), as it affects the acceptor concentration and therefore the energy transfer 

efficiency.  

For the fluorescence experiments stock solutions of protein mutants and wild-type 

protein solubilized in cholate buffer were mixed with solutions of lipids in the same buffer, as 

described previously (Spruijt et al., 1989). Repeated dialysis of the mixtures in cholate-free 

buffer was performed to remove the cholate in the sample. The lipid loss during dialysis can 

vary near 20% (Spruijt et al., 1989), and this fact should be taken into account during the 

analysis of the experimental data.  

Table 2.1. Sample composition of M13 major coat protein incorporated into DOPC:DOPG bilayers 
given in terms of rLP and rul, and observed energy transfer efficiencies E for mutants with acceptor 
positions nA at 24, 38 and 46. For mutant G38C two FRET titration experiments were carried out at 
different values of rLP and rul. 

Data set     
nA 24 38 38 46 
rLP 3600 209 3213 105 
rul 0.6 6 1 1.3 
E 0.558 0.121 0.254 0.152 

rLP 1059 128 553 80 
rul 4.5 10 10 2.2 
E 0.165 0.094 0.056 0.147 

rLP 621 71 303 55 
rul 8.4 19 18 3.9 
E 0.099 0.071 0.043 0.135 

rLP 340 45 159 38 
rul 16 33 36 6 
E 0.058 0.056 0.027 0.127 

rLP 179 28 65 25 
rul 32 54 88 10.4 
E 0.033 0.047 0.020 0.116 

 

2.2.2.  FRET experiments 

Optical spectroscopy. Absorption spectra were recorded on a Varian Cary 5E UV-

Vis-NIR spectrophotometer and fluorescence emission and fluorescence excitation 

measurements were performed on a Fluorolog 3.22 manufactured by Jobin Yvon-Spex as 
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described elsewhere (Gustiananda et al., 2004; Vos et al., 2005). For fluorescence excitation 

measurements the detection wavelength was set at the maximum of the acceptor (AEDANS) 

fluorescence of a particular mutant and the excitation wavelength was scanned from 260 to 

400 nm. The detection wavelength was different for each mutant, because the AEDANS 

fluorescence maximum varies with bilayer depth (i.e. local polarity) of the AEDANS label 

and therefore with the residue number of the labeled cysteine. The AEDANS fluorescence for 

mutants 24 and 46 was observed at 490 nm; for mutant 38 this was 470 nm. The applied slit 

widths of the detection and excitation monochromators corresponded to 5 and 2 nm band 

pass, respectively. The spectra were automatically corrected on the Fluorolog 3.22 for 

variations in the lamp output by dividing the sample signal by that of an internal reference 

detection system. All excitation spectra were corrected for background fluorescence using an 

equimolar solution of pure wild-type protein (no AEDANS present). Moreover, tryptophan 

fluorescence is neglectable at the detection wavelength (see Fig. 2.4 A), therefore the 

observed radiation exclusively belongs to AEDANS. The temperature during all 

measurements was 20°C. Because of the small protein concentrations used in our experiments 

(about 1 µM), errors caused by the inner filter effects can be neglected.  

Analysis of AEDANS excitation spectra. The derivation of the mathematical 

expressions for the analysis of the experimental excitation spectra is given in Appendix A 

(section 2.6). For our analysis we used the energy transfer efficiency E, which can be 

calculated from the fluorescence intensities (Lakey et al., 1993) by  
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where rul is the ratio of the number of unlabeled to labeled proteins. For every sample the ratio 

of the fluorescence intensity at 290 nm, F290, (mainly donor excitation) to that at 340 nm, F340, 

(exclusively acceptor excitation) was calculated, being a measure of the donor-to-acceptor 

energy transfer. The ratio F290/F340 was corrected for direct excitation of AEDANS at 290 nm 

by subtracting the ratio of the extinction coefficients εA
290/εA

340 = 0.20 (this ratio was 

calculated using mutant Y21A/Y24A/W26A/G23C). Finally, the ratio of the extinction 

coefficients of the acceptor at 340 nm (εA
340) and donor at 290 nm (εD

290) have to be taken 

into account in Eq. 2.1 (εA
340/εD

290 = 1.2).  
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2.3. Methodology 

2.3.1.  Model for the transmembrane domain of M13 coat protein incorporated into a 

lipid bilayer 

The proposed simplified structural model for the transmembrane domain of M13 coat 

protein consists of an ideal α-helix (Fig. 2.1) (Glaubitz et al., 2000; Koehorst et al., 2004; 

Marassi and Opella, 2003; Stopar et al., 2003). The complete set of structural parameters that 

determines the protein-lipid system is presented in Table 2.2. In the protein model, we assume 

two specific sites: a donor and an acceptor site that will enable us to calculate the theoretical 

energy transfer and relate that to the FRET experiments. For M13 coat protein, which consists 

of 50 amino acid residues, the donor is the Trp-26 and the acceptor is introduced at an 

arbitrary position in the transmembrane protein domain via cysteine mutagenesis and labeling 

with a fluorescent label (in our case: AEDANS). Acceptor sites are empty for non-labeled or 

wild-type proteins.  

As a model for proteins incorporated into a lipid bilayer, a square region of a bilayer 

containing a certain number of proteins (NP) is considered. By using a three-dimensional 

mathematical description, protein molecules as shown in Fig. 2.1 are inserted randomly (both 

in location as well as in orientation) into the lipid bilayer in the way that the angle θ between 

the membrane normal and their main axis O of the transmembrane domain is between 0 and 

90º. The direction of the protein tilt is given by ψ. A value ψ = 0 means that protein is tilted 

towards the Cα of the reference (n0) amino acid residue. The depth of protein insertion is 

given by parameter d. It is assumed, that when inserted into the membrane, the proteins 

occupy a cylindrical region in both bilayer leaflets with a protein exclusion distance DP. 

Within this region no lipids or other proteins can be located. 

In the protein-lipid model the direction of the tilt and the orientation of the N-terminal 

domain of each protein in the coordinate system of the bilayer are set randomly. Two 

algorithms of protein insertion were considered. In the first one three reference points located 

in the transmembrane domain were selected, and during insertion the distances between these 

reference points of the inserted protein and similar points on the nearest proteins were 

compared with DP to determine the overlapping situation. In case of a clash, the algorithm 

selected a different protein direction or, if still unsuccessful after a number of tries, a new 

protein position. In the second algorithm the proteins were simply inserted randomly at 

distances larger than DP. In this case their tilted transmembrane domains could in principle 

overlap. This first algorithm turned out to be quite time consuming (from 2 to 20 times, 



SBF for analysis of membrane protein embedment and association                 Chapter 2 
 

 

 

46

depending on the L/P ratio) without significant changes in the energy transfer results (less 

than 0.02 for the extreme case of L/P 25). Therefore, we decided to use the simplified 

algorithm in all further fitting procedures. 

The area of the considered square region of the membrane is calculated from the 

experimental L/P ratio (rLP), the protein exclusion distance (DP), the area per two lipid 

molecules (SL) and the ratio of lipids lost during dialysis to their initial quantity (i.e. the lipid 

loss L) in the following way: 

( )( )421 2
PLPLP DLrSNS π+−= .    (2.2) 

Furthermore, to be able to work with mixtures of labeled and unlabelled protein 

molecules, the ratio rul between the number of unlabeled and labeled proteins needed to be 

introduced into the model. 
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Figure 2.1. (A) Schematic drawing of the transmembrane domain of M13 major coat protein 
consisting of an ideal α-helix (Glaubitz et al., 2000; Koehorst et al., 2004; Marassi and Opella, 2003; 
Stopar et al., 2003). As an example, the donor (Trp-26, black circle, located on the N-terminal side at a 
distance lD from the protein helix axis) and acceptor (AEDANS, grey circle, located on the C-terminal 
side at a distance lA from the protein helix axis) are attached at positions 26 and 38, respectively. The 
membrane axis system is indicated by X, Y, and Z. The XY plane at Z = 0 corresponds to the centre of 
the lipid bilayer in which the protein is inserted. Parameter d is the distance from the origin of the 
coordinate system of the protein to the centre of the lipid bilayer. Axis O is the helix axis of the 
protein domain, and θ is the tilt angle, i.e. the angle between the helix axis and the normal to the 
membrane. Oxy is the projection of the helix axis on the XY plane. Angle ψ is the protein tilt direction, 
i.e. the direction of the tilting of the helix. The complete set of structural parameters that determines 
the protein-lipid system is presented in Table 2.2. 
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Table 2.2. Definition of the parameters used in the model for the protein-lipid system. In the 
simulations parameters θ, d, ψ, L, and k are varied. Parameters nA, rLP and rul are determined by the 
experiment; the other parameters are fixed as shown in the table.  

Para-
meter 

Range or 
value 

Unit Description 

n0 26 – The position of a reference amino acid residue. The projection of its 
Cα to the helix axis of the protein O gives the origin of the coordinate 
system of the protein. Position n0 = 26 was selected for the 
transmembrane domain of M13 major coat protein. 

h 1.5 Å Translation per amino acid residue along the helix; this is 1.5 Å for a 
perfect α-helix. 

nr 3.6 – Number of amino acid residues per one turn; this is 3.6 for a perfect 
α-helix. 

nD 26 – Donor position; position of amino acid residue given by the donor. 
For M13 coat protein the donor is Trp-26, which is located in the 
transmembrane domain. 

nA 1 – 50 – Acceptor position; position of amino acid residue labeled by the 
acceptor. For the transmembrane domain of M13 coat protein the 
acceptor positions are 24, 38 and 46. 

lD 6.5 Å Donor arm, the average distance from the donor moiety to the helix 
axis. A value lD = 6.5 Å was taken (Koehorst et al., 2004). 

lA 9.5 Å Acceptor arm, the average distance from the acceptor moiety to the 
helix axis. A value lA = 9.5 Å was taken (Koehorst et al., 2004). 

θ 0 – 90 ° Protein tilt angle; the angle between the helix axis and the normal to 
the membrane.  

d 0 – 30 Å Distance from the origin of the coordinate system of the protein to 
the centre of the bilayer.  

ψ -180 – 180 ° Protein tilt direction; the direction of the protein transmembrane 
domain tilting. A value ψ = 0 means that protein is tilted towards the 
Cα of the reference (n0) amino acid residue.  

NP 500 – Number of proteins in the system. All simulations were performed 
for models containing 500 proteins. 

SL 72 Å2 Area occupied by a lipid in one leaflet of a bilayer; the average area 
for the DOPC:DOPG system is 72 Å2 (Fernandes et al., 2003). 

L 0.0 – 1.0 – Lipid loss; ratio of lipids lost during dialysis to their initial quantity. 
DP 10 Å Protein exclusion distance; minimal protein-protein distance. For 

M13 coat protein a value DP = 10 Å was taken. 
rLP ≥ 0 – Lipid to protein ratio. 
rul ≥ 0 – Ratio between the number of unlabeled and labeled proteins.  
k 0.0 – 1.0 – Protein-protein association probability, defined as the percentage of 

clustered proteins with respect to the total number of proteins (see 
Fig. 2.2). 

R0 24 Å Förster distance. A value of 24 Å is calculated using the data about 
the photophysical properties of the donor and acceptor. 
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Similar to the experimental reconstituted protein-lipid system, protein molecules can 

be inserted into the model membrane randomly with “parallel” and “anti-parallel” 

orientations; this means that the N-terminal domain of the protein can be located either in the 

upper or in the lower leaflet of the membrane with equal probabilities. The result of these 

equiprobable orientations is that the membrane system contains two layers of donors and two 

layers of acceptors. 

A protein-protein association probability k is introduced to take into account the ability 

of the membrane proteins to form oligomers or clusters. The algorithm for this association is 

as follows. All proteins are divided into two groups: free and associated. Initially, the 

coordinates of the free proteins in the XY plane of the membrane are randomly generated. 

Before incorporation of a new protein into the membrane model, it is checked whether the 

position for the protein is free (all previously incorporated proteins are not closer than DP). If 

the position is occupied, random coordinates are selected again. For associated proteins the 

algorithm is slightly changed: the XY coordinates are selected in a way, to incorporate the 

protein at a distance DP next to one of previously incorporated proteins. The value of k ranges 

from 0 to 1, indicating no association and complete association (all proteins are clustered 

together), respectively. The effect of protein association is exemplified in Fig. 2.2. 

Apart from the structural parameters and parameters related to the composition of the 

protein-lipid system, one additional physical parameter needs to be introduced: this is the 

Förster distance R0 of the donor-acceptor pair. Its physical meaning is discussed below. 

 

 

 

A B C 

Figure 2.2. Schematic illustration of the effect of protein association resulting from the model 
described in the text. (A) Random distribution of proteins with k = 0, (B) partially associated 
proteins with k = 0.5, (C) completely associated proteins (k = 1). Proteins are schematically 
indicated by solid dots. The figures show that at increasing values of k the proteins aggregate 
into clusters in a non-specific way.  
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2.3.2. Models for FRET 

Basic model for energy transfer. Being in an excited state a fluorescent molecule has 

a dipole-dipole interaction with other molecules in close proximity, which can lead to energy 

transfer from the excited molecule to the non-excited ones. If we assume that the emission 

spectrum of the donor overlaps with the absorption spectrum of the acceptor, the photon 

absorbed by the donor can be transferred to the acceptor with a rate constant kET depending on 

the sixth power of the distance between the donor and acceptor 

6
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,     (2.3) 

where τD is the lifetime of an isolated donor, R the distance between the donor and acceptor. 

The so-called Förster distance R0 is given by  

( ) 6142
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−= κ .    (2.4) 

In this equation κ2 is the orientation factor describing the relative orientation of the 

transition dipole moments of the donor and the acceptor, n is the refractive index of the 

environment, QD is the quantum yield of an isolated donor, and J is the integral expressing the 

degree of donor emission and acceptor absorption spectral overlap (Lakowicz, 1999). 

Consider now a system of multiple donors and acceptors that are fixed at their 

positions. Let us number the donors i=1..ND, and acceptors j=1..NA. Here ND is the number of 

donor molecules, and NA the number of acceptor molecules. The probability for each donor to 

transfer energy to one of the acceptors can then be calculated as follows: 
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where Ri,j is the distance between the i-th donor and j-th acceptor. 

The mean probability of energy transfer events for all donor molecules gives the 

energy transfer efficiency E for the entire system: 

DNipE >=< .     (2.6) 
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Steady-state FRET simulation. To analyze the experimental steady-state 

fluorescence data, steady-state FRET simulation is employed. The main advantage of this 

approach over Monte Carlo time-resolved simulation is its simplicity and high speed. The 

simulation starts with the generation of the structural model for the protein-lipid system. This 

model provides the coordinates of each donor and acceptor. The energy transfer efficiency E 

is then calculated using Eqs. 5 and 6. Because of the stochastic nature of the structural model, 

the resulting energy transfer efficiency contains stochastic deviations. Therefore the 

simulations are executed several times to make the results statistically relevant. The flow 

diagram of the simulation is shown in Fig. 2.3 and described below. 

 

1. Setting of input 
parameters; 

ND – number of donors; i = 1 

4. Calculation of probability 
of energy transfer from i-th
donor to any acceptor – pi .  

See Eq. 2.5

5. i = i +1

2. Building of structural 
model (virtual placement of 
proteins into a membrane)

3. i ≤ ND ?

yes
no

6. Resulting 
E = <pi>ND

 

Figure 2.3. Flow diagram of a single simulation of energy transfer in a protein-lipid system.  

1. The parameters of the system are set (block 1).  

2. The structural model of a membrane with embedded proteins is created in 

accordance with the input parameters. The coordinates and orientation of the 

proteins provide information about the locations of donors and acceptors in the 

system (block 2). 

3. For each donor (denoted as i) the distances to all acceptors are considered and the 

probability of energy transfer (to any of them) is calculated using Eq. 2.5 

(blocks 3-5).  

4. The mean probability of energy transfer among all donors results in the energy 

transfer efficiency for the whole system (Eq. 2.6). 
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5. Steps 2-4 (and blocks 2-6 in the flow diagram) are repeated for a number of times 

to decrease the effect of the randomness of the protein distribution. In our 

calculations we executed the simulation for 100 times. 

Analytical model of FRET in planar systems. An analytical expression for FRET in 

a planar system was initially developed by Wolber and Hudson (Wolber and Hudson, 1979) 

and further enhanced by Davenport et al. (Davenport et al., 1985). In these models acceptors 

were considered as molecular systems of infinitesimal size uniformly distributed in a plane. 

The original equations by Davenport et al. can be modified to describe the energy transfer in 

the systems of M13 coat protein incorporated into lipid bilayers. The resulting analytical 

expression for the energy transfer efficiency E in the considered system is  
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where ρD is the fluorescence decay of a single donor, τD is the donor lifetime, and qσ and qintra 

are the quenching contributions of inter and intramolecular energy transfer, respectively. The 

derivation of Eq. 2.7 and a further description of the expressions for ρD, qσ, and qintra are given 

in Appendix B (section 2.7). 

2.3.3.  Simulation-based fitting approach to experimental data analysis 

The FRET model developed for M13 coat protein incorporated into lipid bilayers is 

used to analyze experimental data via the SBF approach. The scheme of SBF has been 

discussed in detail recently (Nazarov et al., 2004). As a measure of the goodness of the fit the 

following criterion was introduced: 

( )
2

1

2 ∑
=

−=
N

i

s
i

e
i EEχ ,     (2.8) 

where N is the number of data points, e
iE  the experimentally obtained energy transfer 

efficiency, and s
iE  the simulated energy transfer efficiency. To fit the modeled energy 

transfer efficiencies to the experimental ones, an optimization algorithm should be used. In 

our case gradient optimization techniques are not applicable to fit the data, because of the 

stochastic behavior of the error function χ2. Therefore, to perform a simultaneous fit of all 

experimental data the Nelder-Mead “simplex” method (Nelder and Mead, 1965) is used. This 

method provides a reasonable convergence and is not extremely time consuming. To increase 
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the robustness of the method and the precision of the solution a global analysis approach is 

chosen, and therefore all experimental data were fitted simultaneously (Beechem and Brand, 

1986). 

Because of the stochastic behavior of the FRET model, the error function χ2 is 

stochastic as well, and the parameters obtained after each fit contain random deviations that 

are dependent on the sensitivity of the energy transfer to variations of the parameters. 

Therefore, to deal with this stochastic effect and to avoid possible local minima, the fitting 

procedure is performed 100 times with different initial estimations of the fitting parameters. 

The methodology used for the analysis of the resulting solutions and the selection of the 

representative solutions in terms of an optimal 20% “elite” subset is given in Appendix C 

(section 2.8). 

All models were realized as C++ classes. The Borland C++ Builder 6.0 environment 

was used to combine the developed models, OpenGL visualization and SBF fitting algorithms 

into a software tool called FRETsim. The C++ classes and software are available from the 

authors upon request. 

2.4. Results 

2.4.1. Experimental energy transfer efficiencies  

An example of the experimentally obtained excitation spectra at different L/P ratios is 

presented in Fig. 2.4. The increase of the fluorescence intensity at the donor absorption 

wavelength (290 nm) clearly shows the increasing effect of energy transfer.  

The mutants that were selected for our experiments (Y24C, G38C, and T46C) have 

their cysteines, and therefore the AEDANS labels, on the boundaries or close to the center of 

the transmembrane α-helix, which ranges from about amino residue 25 to 45 (Koehorst et al., 

2004; Papavoine et al., 1997; Vos et al., 2005). For mutant G38C two FRET titration 

experiments were performed at different values of rLP (and also acceptor concentrations) to 

study its effect of protein association, given by parameter k. As a result of titration 

experiments on Y24C, T46C, and the double experiment on G38C mutants four data series 

were obtained. The experimental L/P ratios rLP, the unlabelled-to-labeled protein ratios rul, 

and resulting energy transfer efficiencies are presented in Table 2.1. The behavior of the 

energy transfer efficiency for different mutants as a function of rul is illustrated in Fig. 2.5. 
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Figure 2.4. (A) Emission spectrum of wild type proteins (WT) showing the Trp fluorescence, 
and emission spectra of mutant proteins Y24C, G38C, and T46C with AEDANS-labeled Cys at 
positions 24, 38, 46 after subtraction of the fluorescence of equimolar WT samples. Note that 
almost no Trp fluorescence can be observed at the AEDANS emission maxima. (B) 
Experimental excitation spectra obtained for mutant 38 at different titration points of wild-type 
proteins. The emission was detected at 470 nm. The labels 1 to 5 correspond to rul values of 6, 
10, 19, 33, and 54, respectively. The lipid-to-protein ratios rLP are 209, 128, 71, 45, and 28, 
respectively (see data set  in Table 2.1). The sample showing the highest peak at 290 nm 
(spectrum 5) has the highest protein density (lower rLP) and rul. Although the efficiency of 
energy transfer (Fig. 2.5) for this case is smallest, the overall energy absorbed by the donors in 
such a system, and therefore the transferred (intermolecular), is higher than for the other values 
of rLP and rul. 
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Figure 2.5. Experimental energy transfer efficiencies E (filled dots and triangles) and their 
approximation by the model (solid line) after global analysis versus the ratio between unlabeled 
and labeled proteins rul. (A) mutant 24, (B) mutant 38, (C) mutant 46. The labels –  refer to 
the corresponding data sets in Table 2.1. In (B) the dots indicate data set  and the triangles 
data set . The error bars correspond to the maximal deviations of the data points observed 
during the experiments. 

2.4.2. Förster distance  

The value of Förster distance R0, needed for simulation of energy transfer, was 

calculated using Eq. 2.4. In this equation QD = 0.23 was taken, which is the quantum yield of 

tryptophan in dimyristoyl phosphatidylcholine (DMPC) bilayers (Fisher and Ryan, 1999). The 

overlap integral J is calculated from the emission spectrum of the wild-type protein and the 

absorption spectrum of the AEDANS-labeled Y21A/Y24A/W26A/G23C mutant, which has 

no tryptophan at position 26. This results in a value of 5.96×10-15 M-1cm3. For small proteins 

and peptides, as is the case for M13 coat protein, the orientation factor κ2 can be approximated 
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by its isotropic dynamic average, giving a value of 2/3 (Gustiananda et al., 2004; Kamal and 

Behere, 2002; Lakshmikanth et al., 2001; Loura et al., 1996; Vos et al., 2005). For simplicity 

the refractive index of the medium is assumed to be constant, and equal to 1.4 (Davenport et 

al., 1985; Lakowicz, 1999). These parameters result in a Förster radius R0 of 24 Å. It should 

be noted, that the excitation band of AEDANS with its maximum around 340 nm does not 

change with the position of the labeled cysteine. This implies that the Förster distance for the 

donor-acceptor pair is equal for all mutants. 

2.4.3. Determination of bilayer topology of the protein 

All four sets of experimental data were fitted simultaneously. The fitting procedure 

included 50 iterations of the Nelder-Mead “simplex” method. To avoid local minima the 

fitting procedure was independently repeated 100 times with different initial estimations of 

the desired parameters: L, k, θ, ψ, and d. The values of initial estimations were randomly 

selected from the parameter ranges, presented in Table 2.2. The calculation of each single 

solution took approximately 20 min on a computer with a Pentium 4 processor (each 

simulation takes 1-5 s). Because the calculation of each solution is an independent task, the 

fitting was parallelized between several computers. The solutions found were analyzed as 

described in paragraph 3.3. The resulting χ2 for the “elite” set varies from 0.0039 to 0.0048, 

the discarded solutions had a χ2 ranging from 0.0048 to 0.1. 

The resulting values together with the standard deviations inside the “elite” set of 

solutions are presented in Table 2.3. This table also shows a compilation of the values known 

from the literature. The best fitting results are presented in Fig. 2.5 together with the 

experimental data. 

Table 2.3. Resulting parameters of the model for the protein-lipid system applied to the 
transmembrane domain of M13 major coat protein incorporated into DOPC:DOPG bilayers and the 
corresponding values known from the literature.  

Parameter Value found Previously reported value Reference 
L 0.28 ± 0.03 ~ 0.2 (Spruijt et al., 1989) 
k 0.03 ± 0.01 ~ 0 (Fernandes et al., 2004) 
θ 18 ± 2° 19 ± 1° 

26° 
20 ± 10° 

(Koehorst et al., 2004) 
(Marassi and Opella, 2003) 

(Glaubitz et al., 2000)  

ψ 61 ± 7° 60° (Koehorst et al., 2004) 
d 8.5 ± 0.5 Å 8.9 Å (Koehorst et al., 2004) 
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2.5. Discussion 

2.5.1.  Measuring strategy 

In this study we aimed at the development of a methodology based on a combination 

of FRET spectroscopy and computer simulation, thereby providing information about the 

position and protein-protein associations in a membrane system. By assuming a helical 

structure for the fluorescent-labeled protein (or its domain) the proposed approach is able to 

determine both its topology and bilayer embedment in terms of protein tilt angle, direction of 

tilt and protein depth in the membrane. Moreover, the method provides a quantitative analysis 

of the protein-protein associations, which can hardly be performed by other spectroscopic 

methods. In the case of a non-dilute protein-lipid system with randomly distributed proteins 

the energy of donor excitation can be transferred both intra and intermolecularly. Because the 

aggregation behavior of M13 coat protein in lipid vesicles is not well documented, and cannot 

be excluded even at high L/P ratios, the efficiency of the intermolecular energy transfer 

component may partly arise from relatively short donor-to-acceptor distances in protein 

aggregates. 

Being incorporated into the membrane, the proteins form two planes of donor and two 

planes of acceptor molecules, originating from “parallel” and “anti-parallel” orientations of 

the proteins. The intermolecular energy transfer is influenced, among other factors, by the 

distances between the donor and acceptor planes, which are determined by the z-coordinates 

of the fluorescent labels. Structural parameters describing the embedment and orientation of 

the protein, such as d, θ, and ψ (see Fig. 2.1) can change the positions of the planes, and 

therefore can be tracked by analyzing energy transfer processes.  

The selection of mutants Y24C, G38C, and T46C was given by two rationales. First, 

the selected labeling sites should be located in an α-helical part of the M13 coat protein. This 

condition arises from the assumption of an α-helical protein model. Second, the selected sites 

should present maximally diverse intramolecular distances and acceptor positions inside the 

membrane, to increase the precision of the parameter determination. Therefore, sites should 

be located preferably at the edges of such a helical part. An α-helical conformation was 

suggested for positions from about 25 to 45 in the transmembrane domain (Koehorst et al., 

2004; Papavoine et al., 1997; Vos et al., 2005). Therefore we selected the mutants Y24C, 

G38C, and T46C as labeling sites. To study possible effects of protein aggregation additional 

experiments were performed for the G38C mutant at high and low L/P ratios (see Table 2.1). 
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For an ideal case of independent parameters and independent experiments without any 

distortion in the obtained data, the number of experiments N should be equal to n (N = n), 

where n is the number of unknown parameters. However if the data set contains noise, the 

number of equations should be larger than the number of parameters (i.e. N > n). Obviously, 

the more data provided, the higher the precision one would get. In our specific situation each 

of the data series (as shown in Table 2.1 and Fig. 2.5) can be considered as two independent 

points representing the intra and inter-molecular energy transfer. Therefore, for the situation 

of an α-helical protein model with five unknown structural parameters (giving n = 5, i.e. θ, d, 

ψ, L, and k), at least one independent data series coming from each of the three selected 

mutants is needed (giving N = 6). Of course, including additional series would enhance the 

precision of the determination of the parameters. Thus as a rule of thumb at least three donor-

acceptor pairs would be needed that are regularly spread over the protein transmembrane 

domain. 

To determine the energy transfer parameters, fluorescence excitation spectroscopy was 

used by monitoring the acceptor excitation at wavelengths 470-490 nm. Here the acceptor 

fluorescence was monitored, thereby optically selecting only the acceptor-labeled mutants, 

and discriminating between fluorescence resulting from donor-to-acceptor energy transfer and 

fluorescence resulting from direct excitation. There are two advantages of recording the 

acceptor fluorescence excitation over the donor fluorescence. First, the intensity of the 

background fluorescence between 450 and 550 nm is less than in the UV region 

(tryptophan/donor fluorescence is between 300 and 350 nm). Second, for an experiment in 

which the donor is monitored, varying the wild-type protein concentration or varying the 

mutant protein concentration would change the concentration of that donor, while in our 

approach the concentration of the monitored acceptors is kept constant. The small lifetime of 

tryptophan (~3.6 ns) allows us to assume that there is no lateral mobility in the system that 

can significantly change the donor-acceptor distance.  

To separate intra and intermolecular energy transfer contributions, we performed 

titration experiments in which mixtures of a fixed amount of labeled protein mutants and 

different amounts of wild type protein were re-constituted into lipid vesicles. Both unlabeled 

mutant and wild-type protein can be considered spectroscopically identical as donor-

containing molecules without acceptor label, however, labeled mutants contain both a donor 

and acceptor. 
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2.5.2.  Validation of the simulation model 

Before applying the protein-lipid model and the SBF approach to real experimental 

data, both the model and the approach should be validated. As a first step, the energy transfer 

efficiency is calculated for a system with different L/P ratios rLP (for simplicity we consider a 

constant rul = 0) and compared with results of the modified Davenport’s analytical model, Eq. 

2.7. The comparison is carried out for different values of rLP, which influence the acceptor 

surface density. The resulting energy transfer efficiencies are plotted in Fig. 2.6, using a value 

for DP, and consequently the exclusion distance in Davenport’s model, of 10 Å, which is 

about the diameter of a transmembrane protein domain. The plot shows a deviation of the 

analytically obtained energy transfer efficiencies from the simulated ones. This finding 

provoked us to perform an additional study on the applicability of the analytical solution. As 

was mentioned before, the analytical solution is based on a number of simplifications; one of 

those is the assumption of an infinitely small acceptor size. To check this situation a 

comparison is carried out by assuming as small transmembrane protein domain with an 

exclusion distance DP of 1 Å. For such a system a complete correspondence between the 

simulated and analytically calculated energy transfer efficiency is observed (Fig. 2.6). 
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Figure 2.6. Comparison of simulation results with analytical solutions for different sizes of 
proteins. Solid line: analytical result for DP = 10 Å; ♦: simulation results with the same protein 
exclusion distance DP = 10 Å; dotted line: analytical energy transfer efficiency; o: simulated 
energy transfer efficiency for DP = 1 Å. All calculations were performed with the following 
protein parameters: nA = 46, nD = 26, θ = 16°, ψ = 50°, d = 10 Å, SL = 72 Å2, and R0 = 24 Å. 
The corresponding parameters for the analytical model are: hI = 26.8 Å, hII = 13.1 Å, and Rintra 
= 33.9 Å. 
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From the comparison it is clear that the steady-state simulation model of FRET gives 

the same results as the extended well-known analytical solution of Davenport et al. 

(Davenport et al., 1985) (Eq. 2.7) in the case of small acceptor-labeled molecules. However, if 

the size of the molecules becomes comparable to the Förster distance, the simulation-based 

approach should be used rather than the analytical model. It is clear that the limiting situation 

for small molecular sizes of the simulation-based approach corresponds to the analytical 

solution. The simulation-based approach is more general and powerful than the analytical 

model and can be applied for the analysis of donor-acceptor systems with any geometry. 

2.5.3.  Testing of the simulation-based fitting approach 

A numerical test was performed to prove the applicability of the SBF approach to the 

problem of M13 coat protein structure determination and to find the optimal “elite” subset 

size. In this test synthetic FRET data were generated using the model with values of 

parameters close to those determined experimentally for M13 coat protein. The simulation 

was performed for 1000 proteins and the results were averaged for 1000 simulations. This 

provided us with synthetic data containing a very small randomness. Then these synthetic data 

were analyzed via the SBF approach as mentioned before, and the solutions were handled as 

shown in Appendix C (section 2.8). The smallest deviation from the original values of the 

parameters was found for a 20% “elite” subset. The results are presented in Table 2.4. The 

random spread of the solutions inside the “elite” set was close to that obtained during the 

analysis of the experimental data (Table 2.3).  

 

Table 2.4. Original and calculated values of the model parameters after analysis of synthetic FRET 
data by means of a SBF approach. To introduce noise in the synthetic data, a standard deviation of 
~10% is used for points with a low rul and ~5% for points with a high rul (see the error bars in Fig. 
2.5).  

Para-
meter 

Original value in 
synthetic data simulation 

Value found after SBF 
analysis with no noise 

added to synthetic data 

Value found after SBF 
analysis with additional 
noise in synthetic data 

L 0.3 0.29 ± 0.01 0.30 ± 0.03 
k 0.05 0.05 ± 0.01 0.07 ± 0.02 
θ 20° 19 ± 3° 16 ± 3° 
ψ 60° 61 ± 8° 47 ± 15° 
d 9 Å 8.9 ± 0.2 Å 9.2 ± 1 Å 
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The values found for the association coefficient k and lipid loss L (see Table 2.4) are 

very close to the original ones, and have a relatively small error. These two parameters 

influence the surface density of the label and therefore have a strong effect on the 

intermolecular FRET. Despite some correlation between k and L, the method is able to 

determine both parameters quite well. From the results in Table 2.4 it follows that the values 

of the protein depth d, protein tilt angle θ are close to the original ones. The direction of 

protein tilting ψ has a substantial large variation. The reason for the spread in ψ is that this 

parameter does not significantly influence the position of the donor and acceptor planes. 

To study the possible effect of experimental noise on the resulting data, we introduced 

Gaussian noise to the synthetic data, and performed a number of fittings. Each SBF was 

performed with its own random deviations in the data. The standard deviation of each data 

point was calculated in according to maximal deviations observed in the FRET experiments, 

which are ~10% for points with a low rul and ~5% for points with a high rul (see the error bars 

in Fig. 2.5). The results of the fitting of the noisy data are given Table 2.4. As can been seen, 

the parameters L, k and d are only slightly affected by introducing noise, indicating that they 

can be determined quite precisely from the FRET experiments. This stability to noise can be 

explained by the fact that we use a global analysis approach and that for each mutant we have 

5 data points. The angular parameters (θ and ψ) tend to deviate from the original value, 

indicating that they are relatively more sensitive to noise in the experimental data. 

From this test it can be concluded that the application of the described biophysical 

model together with the SBF approach to data analysis is capable to determine the protein 

location in a bilayer, and the protein-protein association. This result gives us confidence to 

apply the methodology to analyze our experimental FRET data. 

2.5.4.  Parameters determined 

Table 2.3 summarizes the resulting parameters and the corresponding values known 

from the literature. Variation of the parameters within the error limits given in Table 2.3 does 

not result in values of χ2 higher than 0.0048 (in fact, all acceptable solutions have χ2 values 

between 0.0039 and 0.0048, see Fig. 2.7 A). For example, increasing θ by 20° to 38° 

increases χ2 to 0.0113. This χ2 value is far above the limit of 0.0048 that was taken as 

acceptable.  

The actual value of the parameter describing the lipid loss during dialysis L is 

unknown and has to be determined using the SBF approach from our experimental data. The 

value found is 0.28, which means that approximately 28% of the lipids are washed-out from 
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the sample into the buffer during dialysis. This value is in reasonable agreement with the lipid 

loss of 20% as estimated from biochemical analysis (Spruijt et al., 1989). All our experiments 

were performed under identical conditions and using the same protocol. This allows us to 

assume that the lipid loss is constant for all experiments. The small value of the association 

constant k indicates that the proteins have no tendency to aggregate under the experimental 

conditions. This is in agreement with earlier observations of the protein in DOPC:DOPG 

mixtures (Fernandes et al., 2004). Again some correlation between parameters k and L was 

found. This effect is included in the uncertainty limits for the parameters in Table 2.3.  

The resulting protein depth d of 8.5 Å is very close to the value of 8.9 Å as found from 

fluorescent experiments in DOPC:DOPG (Koehorst et al., 2004). The tilt angle of the 

transmembrane helix θ = 18° is somewhat smaller than the value θ = 26° arising from solid 

state NMR (Marassi and Opella, 2003). However it is within the range of 20 ± 10° as found 

earlier from solid state 13C NMR (Glaubitz et al., 2000). From Stokes shift experiments a 

range of tilt angles from 18 to 28° was estimated (Koehorst et al., 2004). In this work 

(Koehorst et al., 2004) the tilt angle is given as a function of the distance between the 

AEDANS moiety and the α-helix axis. A tilt angle of 19 ± 1° corresponding to the distance lA 

= 9.5 Å, used in our work, is in excellent agreement with our value of 18±2°. The direction of 

the protein tilt ψ is the least sensitive parameter in our case. Nevertheless our value of 61 ± 7° 

is close to 60° as found previously (Koehorst et al., 2004). This comparison shows that our 

model is performing well, certainly by taking into account that only three different mutants 

were used. 

From Fig. 2.5 it can be noticed that some fits are not ideal. The reason for these 

deviations between simulated and experimental efficiencies could be related to the fact that 

the long AEDANS label arm is mobile within a restricted space angle, which size and 

direction differs for different mutants (Vos et al., 2005). A future enhancement of the model 

could be the implementation of the entire AEDANS conformational space for each mutant 

instead of assuming a constant acceptor arm normal to the helix axis. A further improvement 

of the precision of our model can be achieved by using the fluorescent data of the AEDANS 

(Koehorst et al., 2004) in a general global optimization algorithm. We are currently working 

on these challenging ideas.  

The methodology developed here is not limited to M13 major coat protein and can be 

used in principle to study the bilayer embedment and structure of any α-helical single 

transmembrane protein (or peptide), and with some adaptations to transmembrane domains of 

larger membrane proteins. For example, the method was successfully applied to study the 
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aggregation of various WALP peptides in lipid bilayers of different thickness (Sparr et al., 

2005).  
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2.6. Appendix A. Derivation of energy transfer efficiency 

Consider a protein-lipid system containing two types of fluorescently labeled proteins 

– with a single donor (denote it’s quantity by Cu) and with a donor and acceptor (denote the 

quantity by Cl). Let us introduce two efficiencies of energy transfer Eu and El, characterizing 

energy transfer for the first and second protein population. The total energy transfer efficiency 

E for the system is then given by  

l
lu

l
u

lu

u E
CC

CE
CC

CE
+

+
+

=     (2.9) 

Consider now the acceptor excitation spectrum for such a system in a general case 

( )γΘΘΘ λλλλ
luAF ++= ,     (2.10) 

where ΘA is the direct acceptor excitation at wavelength λ, λΘu the excitation due to energy 

transfer from unlabeled proteins, λΘ l the excitation caused by energy transfer from labeled 

proteins (both intra and intermolecular), and γ is a constant that depends on the apparatus and 

experimental conditions. Taking into account the extinction coefficients of donor and acceptor 

and protein quantities this equation can be rewritten in the following form  

( )lDluDuAl ECECCF λλλλ εεεγ ++= ,   (2.11) 

where λε A  is the extinction coefficient of acceptors at wavelength λ, and λε D  the extinction 

coefficient of the donors. At λ = 290 nm the extinction coefficients are non-zero both for our 

donor (Trp-26) and acceptor (AEDANS). However at λ = 340 nm 340
Dε = 0. Taking into 

account the fluorescence at these two wavelengths and expressing the partial efficiencies via 

Eq. 2.9, the following descriptions for the fluorescence of the protein-lipid system can be 

obtained: 
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( )( )ECCCF luDAl ++= 290290290 εεγ ,   (2.12) 

340340
AlCF εγ= .     (2.13)  

Dividing Eq. 2.12 by 2.13 and making simple rearrangements the following equation 

is obtained:  
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By introducing the ratio of the number of unlabelled to labeled proteins, rul, Eq. 2.14 

can then be presented in the following form: 
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2.7. Appendix B. Analytical equation for FRET in systems of M13 coat 
protein proteins incorporated into a lipid bilayer 

Consider a system of labeled and unlabeled M13 coat protein incorporated into a lipid 

bilayer. Let rul be the molar ratio of the labeled and unlabeled proteins. The time decay of the 

fluorescence intensity, ρ (t), of the donor in this system can then be described by:  

)(
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1)(
1
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ul
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ul

ul ρρρ
+

+
+

= ,   (2.16) 

where ρu is the fluorescence decay of the unlabeled proteins, and ρl the fluorescence decay of 

the labeled proteins. The coefficients in front of ρu,l in Eq. 2.16 are the fractions of labeled 

and unlabeled proteins expressed in terms of rul.  

The fluorescence decay of donors attached to unlabeled proteins ρu is affected by 

acceptors of other proteins, distributed around. For labeled proteins the intramolecular energy 

transfer should be taken into account as well. Thus: 

),,,,()()( 0 PDu DhRtqtt σρρ σ×=     (2.17) 

)(),,,,()()( 0 tqDhRtqtt intraPDl ××= σρρ σ ,   (2.18) 
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where ρD is the fluorescence of a single donor, qσ the quenching effect by distributed 

acceptors, and qintra the quenching effect by intramolecular energy transfer in labeled proteins. 

We assume now that the donor fluorescence has a single lifetime and can be described by 

( )DD tt τρ /exp)( −= ,     (2.19)  

where τD is a single donor lifetime. Alternatively, all expressions presented below may easily 

be reproduced for multiexponential donor fluorescence (Loura et al., 2001). 

The quenching by intramolecular energy transfer is given by 

( )( )Dintraintra RRttq τ//exp)( 6
0−= ,    (2.20) 

where Rintra is the intramolecular donor-acceptor distance. Consider now the quenching due to 

distributed acceptors. The overall surface density of acceptors is given by 

)(2/ ulPLL

lA

NNSNS
N

S
N

++
==σ ,    (2.21) 

where S is the area of the entire membrane, NA the number of acceptors in the system, Nl the 

number of labeled proteins, Nu the number of unlabeled proteins, NL the number of lipids, SL 

the area occupied by a single lipid molecule, and SP the area occupied by a single protein 

molecule. Taking into account the definitions of rLP and rul, and considering cylindrical 

proteins, Eq. 2.21 can be presented in the form 

( )( )[ ] ( )( )[ ] 121 12/212/ −− ++=++= ulPLPLulPLPL rDrSrSrS πσ .  (2.22) 

Because of the possibility of parallel and anti-parallel protein orientations, the initial 

acceptor density σ is divided over the two leaflets. For each leaflet the acceptor density σ1 is 

given by: 

( )( )[ ] 12
1 12/2/ −

++== ulPLPL rDrS πσσ .   (2.23) 

Donors are divided over the two leaflets as well. The symmetry of the system then 

leads to an equivalence of relative distances between each donor plane and two acceptor 

planes. Therefore the system can be substituted with a system containing one layer of donors 

and two layers of acceptors at the distances: 
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AD ZZh −=I , and AD ZZh +=II     (2.24) 

where ZD and ZA are the z coordinates (in the membrane axis system) of a donor and acceptor, 

respectively, attached to a protein with an “upright” orientation. 

The analytical solution for the donor fluorescence decay in the presence of uniformly 

distributed acceptors in a plane was given by Davenport (Davenport et al., 1985). Taking into 

account two layers of acceptors located at hI and hII, the quenching effect on the donor 

fluorescence is given as follows: 
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The energy transfer efficiency can be calculated using the relative integrated 

fluorescence intensity of the donors in the presence and absence of acceptors:  
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The integrated fluorescence of a single donor in the case of one exponential decay 

equals to τD. After substitution of ρ, the energy transfer efficiency E can be expressed in terms 

of ρD, qσ, and qintra as follows: 
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2.8. Appendix C. Analysis of the solutions obtained by SBF 

The FRET model that is used in our SBF fitting has a random nature and therefore the 

error function χ2 (Eq. 2.8) is a stochastic one. To deal with this stochastic effect, the fitting 

procedure needs to be performed several times (we take 100, which is found to be sufficiently 

large) with different starting fitting parameters. This approach results in a distribution of 

solutions and each of the resulting solutions has a different χ2 value. A typical distribution of 

resulting χ2 values is shown in Fig. 2.7 A.  

In this case, the selection of the parameter set corresponding to the minimal χ2 is not 

statistically correct, because a low χ2 can be the result of a random deviation. At the same 

time, averaging of all solutions found will lead to an incorrect result as well, because many 

solutions with a high χ2 are included. These solutions do not show a reasonable fit between 

the modeled and experimental data and appear only because the optimization algorithm is 

falling into false local minima. 

To reduce the randomness of a single solution and to find the best solution in the 

parameter space, we use the following approach, which is often found in evolutionary 

computing (Strancar et al., 2005). A part of the solutions with the lowest χ2 values is selected. 

This corresponds to selecting the quantile χ2
q of the χ2 distribution. The solutions with χ2 less 

than the selected quantile are considered as an “elite” subset, and the mean value of the 

parameters inside this “elite” subset is then taken as the result of the fitting. The problem of 

this approach now reduces to finding the optimal size for the “elite” solutions, i.e. the value q 

in the quantile χ2
q. 

The selection of the optimal q is a problem-related task and cannot be analytically 

solved in general. Therefore we employ an empirical approach. Using our numerical model 

the analogues of experimental data were simulated for a known parameter vector P, and these 

synthetic data were fitted by the same model. The resulting solutions were analyzed using the 

quantile approach with various values of q. This provides the resulting parameter vector P*. 

To validate the precision of the representative solutions found, we introduce a function e, 

which is the sum of the parameter deviations:  
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where np is the number of parameters, and Pi is i-th parameter from the parameter vector P. 

The sum parameter deviation e is related to the inaccuracy in the resulting parameters. The 

behavior of the function e with respect to q for our FRET model is depicted in Fig. 2.7 B. On 

increasing q the error is decreasing, as would be expected, since the “noise” is reduced. 

However after taking more solutions into account, the error is increasing again, because bad 

solutions are coming in. The minimal deviation in the parameters is reached for q = 20%.  

To be fully applicable, the algorithm needs all “elite” solutions belonging to the 

neighborhood of a single χ2 minimum, and their differences should be caused by simulation 

randomness. If the solutions would form several separated clusters, the same approach should 

be applied to each of those clusters, and the solutions found should be considered as possible 

states for the system. However, this does not happen in our case. The additional advantage of 

the proposed algorithm is that it gives direct insight in the error range. The standard deviation 

of parameters inside the “elite” subset of solutions therefore can be used as a characteristic of 

the error range of the resulting solution. 
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A      B 

Figure 2.7. (A) Distribution of χ2 of the solutions found after 100 runs of SBF on experimental 
data and (B) behavior of the sum parameter deviation e (Eq. 2.28) with respect to the “elite” 
subset size q. The result in (B) is obtained after averaging the results of three independent 
numerical simulations. For all of them the optimal q was around 20%. 
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ABSTRACT 

Formalism for membrane protein structure determination was developed. This method 

is based on steady-state Förster resonance energy transfer (FRET) data and information about 

the position of the fluorescence maxima on site-directed fluorescent labeled proteins in 

combination with global data analysis utilizing simulation-based fitting. The methodology 

was applied to determine the structural properties of the N-terminal domain of the major coat 

protein from bacteriophage M13 reconstituted into unilamellar DOPC:DOPG (4:1 mol/mol) 

vesicles. For our purpose, the cysteine mutants A7C, A9C, N12C, S13C, Q15C, A16C, S17C 

and A18C in the N-terminal domain of this protein were produced and specifically labeled 

with the fluorescence probe AEDANS. The energy transfer data from the natural Trp26 to 

AEDANS were analyzed assuming a two-helix protein model. Furthermore, the polarity 

Stokes shift of the AEDANS fluorescence maxima is taken into account. As a result a low-

resolution structure of the protein was obtained, showing an overall α-helical protein 

conformation, close to the protein conformation in the intact phage, which is tilted by 18° 

with respect to the normal to the membrane. The methodology developed here is not limited 

to the M13 major coat protein and can be used in principle to study the bilayer embedment 

and structure of any protein for which a one or two-helix model can be applied. 

3.1. Introduction  

Understanding of disease pathways and developments for novel drugs are impossible 

without fundamental knowledge about structure and functionality of membrane proteins 

(Hesselink et al., 2005; Karmazyn et al., 2005; Vassar, 2002; Weinglass et al., 2004). 
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Membrane proteins represent more than 50% of all present and future drug targets. High-

resolution structural studies of membrane proteins by X-ray crystallography or by nuclear 

magnetic resonance (NMR) spectroscopy have traditionally been limited by technical and 

practical difficulties (Torres et al., 2003). This makes structure determination of membrane 

proteins still a key challenge in structural biology. Therefore new biophysical characterization 

techniques are needed to advance the field. Recently, we have shown that steady-state Förster 

(or fluorescence) resonance energy transfer (FRET) provides an attractive alternative 

(Nazarov et al., 2004; Nazarov et al., 2006; Vos et al., 2005). In this work, we tested the 

FRET methodology on bacteriophage M13 major coat protein incorporated in membranes. 

Apart from obtaining structural information about the lipid-bound state of the coat protein, by 

using FRET also significant progress was obtained in the understanding the membrane 

embedment of the protein (Nazarov et al., 2006), the protein-protein and protein-lipid 

interactions (Fernandes et al., 2004; Fernandes et al., 2003).  

M13 major coat protein, as well as coat proteins from related filamentous 

bacteriophages, has been used extensively as a biophysical reference system for studying 

membrane protein embedment (for a review see: (Stopar et al., 2006a)). The coat protein is a 

small protein with a molecular weight of about 5240 Da, which forms a cylindrical shell 

around the DNA in the phage particle. In the phage particle the protein is largely α-helical 

with 4-5 flexible unstructured amino acid residues in the N-terminus (Marvin et al., 1994). 

Previously, it was assumed that the insertion of the protein in a lipid bilayer is accompanied 

with a major structural rearrangement that splits the continuous α-helix in the phage particle 

into an N-terminal amphipathic and a transmembrane helix perpendicular to each other 

(Almeida and Opella, 1997; Bashtovyy et al., 2001; Bogusky et al., 1988; Bogusky et al., 

1987; Henry and Sykes, 1992; Henry et al., 1987; Leo et al., 1987; Marvin, 1998; McDonnell 

et al., 1993; Wolkers et al., 1997). However, recent studies propose that the change in the 

secondary structure on insertion is not so dramatic and that the protein is still dominated by a 

high content of helical structure (Koehorst et al., 2004; Meijer et al., 2001b; Spruijt et al., 

2000; Spruijt et al., 2004; Vos et al., 2005). Therefore, the difference between the two models 

is mostly confined to the topology and orientation of the two helices.  

Previously FRET was applied to AEDANS-labeled cysteine mutants of M13 major 

coat protein reconstituted into vesicles. The energy transfer data from the natural tryptophan 

at position 26, which is used as a donor, to AEDANS were analyzed assuming a helix model 

for the transmembrane domain of the protein (Nazarov et al., 2006). The method allowed the 

determination of the depth, tilt angle, and direction of tilt of the protein in the membrane. To 
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resolve the problem concerning the relative orientation of the N-terminal and transmembrane 

domain, we present here an extension of this approach, by introducing a two-helix model 

describing the N-terminal and transmembrane helix domains of the M13 coat protein. This 

methodology results in a low-resolution structure of the entire protein, including the tilt and 

orientation of the N-terminal domain with respect to the transmembrane domain. 

3.2. Experimental 

3.2.1.  Sample preparation 

As in the previous study (Nazarov et al., 2006), the lipid bilayer systems were 

prepared from dioleoylphosphatidylcholine (DOPC, 18:1PC) and 

dioleoylphosphatidylglycerol (DOPG) lipids in a 4:1 molar ratio, denoted as DOPC:DOPG. 

DOPC was purchased from Avanti Polar Lipids and DOPG was purchased from Sigma.  

Site-specific cysteine mutants of M13 major coat protein were prepared, purified and 

labeled with AEDANS (Molecular Probes) as described previously (Spruijt et al., 2000). 

Wild-type protein and AEDANS-labeled M13 coat protein mutants were reconstituted into 

phospholipid bilayers as reported earlier (Spruijt et al., 1989).  

Protein titration experiments were carried out using the same protocol as published 

recently (Nazarov et al., 2006). We used AEDANS-labeled cysteine mutants of M13 coat 

protein with the cysteine residue at positions 7 (A7C), 9 (A9C), 12 (N12C), 13 (S13C), 15 

(Q15C), 16 (A16C), 17 (S17C) and 18 (A18C). Titration experiments were performed in 

which the wild-type protein concentration was increased, whereas the mutant concentration 

was kept constant. The sample conditions for these titrations are given in Table 3.1. The 

labeling efficiencies were determined as reported previously (Spruijt et al., 1996) and are 

given in Table 3.1. The labeling efficiency is explicitly taken into account in Table 3.1 in the 

ratio of the number of unlabeled to labeled proteins (rul), as it affects the acceptor 

concentration and therefore the energy transfer efficiency.  

For the fluorescence experiments stock solutions of protein mutants and wild-type 

protein solubilized in cholate buffer were mixed with solutions of lipids in the same buffer, as 

described previously (Spruijt et al., 1989). Repeated dialysis of the mixtures in cholate-free 

buffer was performed to remove the cholate in the sample. The lipid loss during dialysis can 

vary between 20-30% (Spruijt et al., 1989, Nazarov, 2006 #56), and this fact is accounted for 

in the analysis of the experimental data. 
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3.2.2.  Fluorescence experiments 

Optical spectroscopy. Fluorescence emission and fluorescence excitation 

measurements were performed on a Fluorolog 3.22 manufactured by Jobin Yvon-Spex as 

described elsewhere (Gustiananda et al., 2004; Nazarov et al., 2006; Vos et al., 2005). The 

position of the AEDANS emission maximum was different for different labeled mutants, 

because the Stokes shift of AEDANS fluorescence significantly depends on the local polarity 

of the environment of the label, and thus on the distance between the label and the center of 

the lipid bilayer (Koehorst et al., 2004; Spruijt et al., 2004). During emission detection 

AEDANS was excited at 365 nm, and the fluorescence was measured between 400 and 600 

nm. Emission spectra were corrected for background fluorescence using equimolar solutions 

of lipid vesicles with incorporated wild type (no AEDANS present) proteins. The positions of 

the AEDANS fluorescence maxima for the various mutants are given in Table 3.1. 

For fluorescence excitation measurements the detection wavelength was set at the 

maximum of the acceptor (AEDANS) fluorescence of a particular mutant and the excitation 

wavelength was scanned from 260 to 400 nm. The resulting emission AEDANS spectra for 

all mutants, and examples of excitation spectra for mutant N12C are presented in Fig. 3.1 A 

and B, respectively. 

The applied slit widths of the detection and excitation monochromators corresponded 

to 5 and 2 nm band pass, respectively. The spectra were automatically corrected on the 

Fluorolog 3.22 for variations in the lamp output by dividing the sample signal by that of an 

internal reference detection system. All excitation spectra were corrected for background 

fluorescence using equimolar solutions of lipid vesicles with incorporated wild type proteins. 

The detected fluorescence exclusively belongs to AEDANS (Nazarov et al., 2006). The 

temperature during all measurements was 20°C. Because of the small protein concentrations 

used in our experiments (about 1 µM), errors caused by inner filter effects can be neglected. 

Analysis of AEDANS emission and excitation spectra. The position of the 

AEDANS emission maxima was determined using a polynomial approximation of the top part 

of the emission peak as in (Koehorst et al., 2004).  
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Table 3.1. Sample composition of M13 major coat protein incorporated into DOPC:DOPG vesicles 
given in terms of rLP and rul, labeling efficiencies, and observed acceptor fluorescence maxima and 
energy transfer efficiencies E for mutants with acceptor positions nA at 7, 9, 12, 13, 15, 16, 17, and 18.  

Data set # 1 2 3 4 5 6 7 8 
Mutant A7C A9C N12C S13C Q15C A16C S17C A18C 

nA 7 9 12 13 15 16 17 18 
Acceptor 

fluorescence 
max. λmax 

497.6 
nm 

496.5 
nm 

496.7 
nm 

499.5 
nm 

493.6 
nm 

495.1 
nm 

494.2 
nm 

491.1 
nm 

Labeling 
efficiency 

0.44 0.78 0.79 0.55 0.53 0.85 0.54 0.56 

rLP 336.0 217.0 276.9 561.5 422.6 239.7 267.7 248.6 
rul 1.27 0.28 0.27 0.82 0.89 0.18 0.85 0.79 
E 0.172 0.463 0.505 0.338 0.443 0.880 0.448 0.488 

rLP 213.2 158.2 184.8 286.2 245.1 169.9 180.7 171.8 
rul 2.58 0.76 0.90 2.57 2.25 0.66 1.74 1.58 
E 0.119 0.366 0.360 0.184 0.261 0.650 0.323 0.354 

rLP 156.2 124.5 138.7 192.0 172.6 131.6 136.3 131.2 
rul 3.89 1.24 1.53 4.32 3.62 1.14 2.64 2.38 
E 0.095 0.307 0.279 0.129 0.200 0.513 0.261 0.286 

rLP 123.2 102.6 111.0 144.5 133.2 107.4 109.5 106.2 
rul 5.20 1.71 2.16 6.07 4.99 1.63 3.53 3.18 
E 0.084 0.260 0.238 0.102 0.152 0.436 0.217 0.248 

rLP 101.7 87.2 92.5 115.8 108.5 90.7 91.5 89.1 
rul 6.51 2.19 2.79 7.82 6.35 2.11 4.42 3.98 
E 0.076 0.231 0.199 0.086 0.129 0.383 0.191 0.225 

rLP 86.6 75.9 79.3 96.6 91.5 78.5 78.5 76.8 
rul 7.81 2.67 3.42 9.57 7.72 2.59 5.31 4.78 
E 0.067 0.207 0.184 0.075 0.111 0.340 0.175 0.198 

rLP 57.0 52.2 52.9 61.2 59.1 53.4 52.6 51.8 
rul 12.4 4.33 5.63 15.69 12.50 4.28 8.43 7.57 
E 0.055 0.160 0.137 0.055 0.079 0.254 0.138 0.149 
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Figure 3.1. (A) Emission spectra of M13 protein mutants A7C, A9C, N12C, S13C, Q15C, 
A16C, S17C, and A18C with AEDANS-labeled Cys after subtraction of the fluorescence of 
equimolar wild-type samples. The histogram shows the values of the acceptor emission maxima 
of the mutants. (B) Experimental excitation spectra (detected at 496 nm) obtained for mutant 
N12C at three titration points of wild-type proteins. Labels 1 to 3 correspond to rul values of 
0.27, 2.16, and 5.63, respectively. The lipid-to-protein ratios rLP are 277, 111, and 53 (see Table 
3.1). The sample showing the highest peak at 290 nm (spectrum 3) has the highest protein 
density (lowest rLP) and rul. Although the efficiency of energy transfer (Fig. 3.3) for this case is 
smallest, the overall energy absorbed by the donors in such a system, and therefore the 
transferred (intermolecular), is higher than for the other values of rLP and rul (Nazarov et al., 
2006). 
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The derivation of the mathematical expressions for the analysis of the experimental 

excitation spectra is given in the previous work (Nazarov et al., 2006). For our analysis we 

used the energy transfer efficiency E, which can be calculated from the fluorescence 

intensities (Lakey et al., 1993; Nazarov et al., 2006) by 

290

340

340

290

340

290

1
1
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A
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ul F
F

r
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ε
ε

ε
ε

⎟⎟
⎠

⎞
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⎝

⎛
−

+
= ,    (3.1) 

where rul is the ratio of the number of unlabeled to labeled proteins. For every sample the ratio 

of the fluorescence intensity at 290 nm, F290, (mainly donor excitation) to that at 340 nm, F340, 

(exclusively acceptor excitation) was calculated, being a measure of the donor-to-acceptor 

energy transfer. The ratio F290/F340 was corrected for direct excitation of AEDANS at 290 nm 

by subtracting the ratio of the extinction coefficients εA
290/εA

340 = 0.20 (this ratio was 

calculated using mutant Y21A/Y24A/W26A/G23C). Finally, the ratio of the extinction 

coefficients of the acceptor at 340 nm (εA
340) and donor at 290 nm (εD

290) have to be taken 

into account in Eq. 3.1 (εA
340/εD

290 = 1.2). 

3.2.3. Förster distance  

The value of Förster distance R0, needed for simulation of energy transfer, was 

calculated using Eq. 3.2  

( ) 6142
0 9780 JQnR D

−= κ .    (3.2) 

In this equation QD = 0.23 was taken, which is the quantum yield of tryptophan in 

dimyristoyl phosphatidylcholine (DMPC) bilayers (Fisher and Ryan, 1999). The overlap 

integral J is calculated from the emission spectrum of the wild-type protein and the absorption 

spectrum of the AEDANS-labeled Y21A/Y24A/W26A/G23C mutants, which had no 

tryptophan at position 26. This results in a value of 5.96×10-15 M-1cm3. The orientation factor 

κ2 is approximated by its isotropic dynamic average, giving a value of 2/3 (Kamal and Behere, 

2002; Lakshmikanth et al., 2001; Loura et al., 1996; Nazarov et al., 2006; Vos et al., 2005). 

For simplicity the refractive index of the medium is assumed to be constant, and equal to 1.4 

(Davenport et al., 1985; Lakowicz, 1999). These parameters result in a Förster radius R0 of 24 

Å. It should be noted, that the excitation band of AEDANS with its maximum around 340 nm 

does not change with the position of the labeled cysteine. This implies that the Förster 

distance for the donor-acceptor pair is equal for all mutants. 
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3.3. Methodology 

3.3.1.  Model for M13 major coat protein incorporated into a lipid bilayer 

In this paper, we will extents our previous single-helix model for the M13 major coat 

protein (Nazarov et al., 2006) to a two-helical model. This model consists of two flexibly 

linked helical domains connected via a kink (Fig. 3.2): one domain reflects the 

transmembrane protein part and the other domain the N-terminal protein part that is supposed 

to stick out of the membrane (Glaubitz et al., 2000; Koehorst et al., 2004; Marassi and Opella, 

2003; Stopar et al., 2006a; Stopar et al., 2003). The conformation of each domain is assumed 

to be a perfect α-helix. The main axis of the protein O is parallel to the transmembrane 

protein domain and defines the z axis of the axes system of the protein. The orientation of the 

x axis is defined by the location of the donor Trp26, which is used as the reference amino acid 

residue. The complete set of structural parameters that determines the location and 

conformation of the protein is presented in Table 3.2. Some of the protein parameters related 

to position of the transmembrane domain are described in the previous study (Nazarov et al., 

2006). 

The parameter ranges given in Table 3.2 indicate the range of values considered in the 

simulations. It should be noted that the two-model could be easily generalized to other 

membrane proteins. Furthermore, a one-helix protein is a special case of the two-helix model 

with ϕ = ω = 0˚. 

The two-helix protein model is incorporated in a membrane as described previously 

(Nazarov et al., 2004; Nazarov et al., 2006). A square region of a bilayer containing a certain 

number of randomly incorporated proteins (NP) is considered. By using a three-dimensional 

mathematical description, protein molecules as shown in Fig. 3.2 are inserted randomly (both 

in location as well as in orientation) into the lipid bilayer in the way that the angle θ between 

the membrane normal and their main axis O of the transmembrane domain is between 0 and 

90º. The direction of the protein tilt is given by ψ. A value ψ = 0 means that protein is tilted 

towards the Cα of the reference (n0) amino acid residue. The depth of protein insertion is 

given by parameter d. It is assumed, that when inserted into the membrane, the proteins 

occupy a cylindrical region in both bilayer leaflets with a protein exclusion distance DP. 

Within this region, no lipids or other proteins can be located. 
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Figure 3.2. Schematic drawing of the two-helix protein model with a donor (Trp26, black 
circle, located at a distance lD from the protein helix axis) and acceptor (AEDANS, gray circle, 
located at a distance lA from the protein helix axis) attached at positions 26 and 9, respectively, 
in its own protein axis system (x, y, z). The orientation of the x axis is defined by the location of 
Trp26, which is used as the reference amino acid residue. The complete set of structural 
parameters that describes the protein-lipid system is presented in Table 3.2. 

The area of the considered square region of the membrane is calculated from the 

experimental L/P ratio (rLP), the protein exclusion distance (DP), the area per two lipid 

molecules (SL) and the ratio of lipids lost during dialysis to their initial quantity (i.e. the lipid 

loss L) in the following way: 

( )( )421 2
PLPLP DLrSNS π+−= .    (3.3) 

Furthermore, to be able to work with mixtures of labeled and unlabelled protein 

molecules, the ratio rul between the number of unlabeled and labeled proteins is introduced 

into the model.  

Similar to the experimental reconstituted protein-lipid system, protein molecules can 

be inserted into the model membrane randomly with “parallel” and “anti-parallel” 

orientations; this means that the N-terminal domain of the protein can be located either in the 

upper or in the lower leaflet of the membrane with equal probabilities. The result of these 

equiprobable orientations is that the membrane system contains two layers of donors and two 

layers of acceptors. 
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Table 3.2. Definition of the parameters used in the two-helix model of proteins embedded in lipid 
bilayers. In the simulations the parameters nk, ϕ, ω, ξ, and L are varied. Parameters nA, rLP and rul are 
determined by the experiment; the other parameters are taken from previous work (Nazarov et al., 
2006) and are fixed as shown in the table.  

Parameter Range/Value Unit Description 
n0 26 – The position of a reference amino acid residue. The 

projection of its Cα to the helix axis of the protein O gives the 
origin of the coordinate system of the protein. Position n0 = 
26 was selected for the transmembrane domain of M13 major 
coat protein. 

h 1.5 Å Translation per amino acid residue along the helix; this is 1.5 
Å for a perfect α-helix. 

nr 3.6 – Number of amino acid residues per one turn; this is 3.6 for a 
perfect α-helix. 

nD 26 – Donor position; position of amino acid residue given by the 
donor. For M13 coat protein the donor is Trp-26, which is 
located in the transmembrane domain. 

nA 1 – 50 – Acceptor position; position of amino acid residue labeled by 
the acceptor. For the transmembrane domain of M13 coat 
protein the acceptor positions are 24, 38 and 46. 

lD 6.5 Å Donor arm, the average distance from the donor moiety to the 
helix axis. A value lD = 6.5 Å was taken (Koehorst et al., 
2004). 

lA 9.5 Å Acceptor arm, the average distance from the acceptor moiety 
to the helix axis. A value lA = 9.5 Å was taken (Koehorst et 
al., 2004). 

nk 1 – 25 – Position of helix kink; position of amino acid residue from 
which the N-terminal helix starts. 

θ 18 ° Protein tilt angle; the angle between the helix axis and the 
normal to the membrane. The value of 18° is found in the 
previous study (Nazarov et al., 2006). 

d 8.5 Å Distance from the origin of the coordinate system of the 
protein to the centre of the bilayer is 8.5 Å (Nazarov et al., 
2006).  

ψ 60 ° Protein tilt direction; the direction of the protein 
transmembrane domain tilting is ~60° as found earlier 
(Koehorst et al., 2004; Nazarov et al., 2006).  

NP 500 – Number of proteins in the system. All simulations were 
performed for models containing 500 proteins. 

SL 72 Å2 Area occupied by a lipid in one leaflet of a bilayer; the 
average area for the DOPC:DOPG system is 72 Å2 
(Fernandes et al., 2003). 

L 0.0 – 1.0 – Lipid loss; ratio of lipids lost during dialysis to their initial 
quantity. 
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Parameter Range/Value Unit Description 
DP 10 Å Protein exclusion distance; minimal protein-protein distance. 

For M13 coat protein a value DP = 10 Å was taken. 
rLP ≥ 0 – Lipid to protein ratio. 
rul ≥ 0 – Ratio between the number of unlabeled and labeled proteins.  
k 0 – Protein-protein association probability, defined as the 

percentage of clustered proteins with respect to the total 
number of proteins, for considered case ~0 (Fernandes et al., 
2004 ; Nazarov et al., 2006) . 

R0 24 Å Förster distance. A value of 24 Å is calculated using the data 
about the photophysical properties of the donor and acceptor. 

ϕ 0 – 90 ° N-terminal helix tilt angle; the angle between protein main 
axis and the N-terminal helix main axis. 

ξ –180 – 180 ° N-terminal helix tilt direction; the direction of the N-terminal 
helix with respect to the x axis of the protein axis system.  

ω –180 – 180 ° N-terminal helix coaxial rotation; the turning angle of N-
terminal helix around its main axis defining the direction of 
amino acid residues (towards water or lipid phase). The case 
ω = 0° corresponds to an ideal α-helix, bent at position nk by 
angle ϕ. 

 

A protein-protein association probability k can in principle be introduced to take into 

account the ability of the membrane proteins to form oligomers or clusters (Nazarov et al., 

2006). However for the present study this value is about 0 and can be neglected. Therefore the 

distribution of proteins in the bilayer is considered as uniformly random. 

Apart from the structural parameters and parameters related to the composition of the 

protein-lipid system, the Förster distance R0 is introduced in the calculations for the energy 

transfer, as described below. 

3.3.2.  Models for FRET 

Being in an excited state a fluorescent molecule has a dipole-dipole interaction with 

other molecules in close proximity, which can lead to energy transfer from the excited 

molecule to the non-excited ones. If we assume that the emission spectrum of the donor 

overlaps with the absorption spectrum of the acceptor, the photon absorbed by the donor can 

be transferred to the acceptor with a rate constant kET depending on the sixth power of the 

distance between the donor and acceptor 

6
01

⎟
⎠
⎞

⎜
⎝
⎛=

R
Rk

D
ET τ

,     (3.4) 
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where τD is the lifetime of an isolated donor, R the distance between the donor and acceptor. 

The Förster distance R0 is given by Eq. 3.2. 

Consider now a system of multiple donors and acceptors that are fixed at their 

positions. Let us number the donors i=1..ND, and acceptors j=1..NA. Here ND is the number of 

donor molecules, and NA the number of acceptor molecules. The probability for each donor to 

transfer energy to one of the acceptors can then be calculated as follows: 
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where Ri,j is the distance between the i-th donor and j-th acceptor. 

The mean probability of energy transfer events for all donor molecules gives the 

energy transfer efficiency E for the entire system: 

DNipE >=< .      (3.6) 

To analyze the experimental steady-state fluorescence data for our system, a steady-

state FRET simulation is employed as described by (Nazarov et al., 2006). The simulation 

starts with the generation of the spatial model for the protein-lipid system. This model 

provides the coordinates of each donor and acceptor. The energy transfer efficiency E is then 

calculated using Eqs. 3.5 and 3.6. Because of the stochastic nature of the spatial model, the 

resulting energy transfer efficiency contains stochastic deviations. Therefore the simulations 

are executed several times (in our case: 50) to make the results statistically relevant. 

3.3.3.  Simulation-based fitting approach to experimental data analysis 

As a measure of the goodness of the fit the following criterion was introduced: 

( )
2

1

2 ∑
=

−=
N

i

s
i

e
i EEχ ,     (3.7) 

where N is the number of data points, e
iE  the experimentally obtained energy transfer 

efficiency, and s
iE  the simulated energy transfer efficiency. To fit the modeled energy 

transfer efficiencies to the experimental ones  the Nelder-Mead “simplex” method (Nelder 

and Mead, 1965) is used. To increase the robustness of the method and the precision of the 
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solution a global analysis approach is chosen, and therefore all experimental data were fitted 

simultaneously (Beechem and Brand, 1986). 

Because of the stochastic behavior of the FRET model, the error function χ2 is 

stochastic as well, and the parameters obtained after each fit contain random deviations that 

are dependent on the sensitivity of the energy transfer to variations of the parameters. 

Therefore, to deal with this stochastic effect and to avoid possible local minima, the fitting 

procedure is performed a number of times with different initial estimations of the fitting 

parameters. The methodology used for the analysis of the resulting solutions and the selection 

of the representative solutions are recently described and discussed in (Nazarov et al., 2006). 

All models were realized as C++ classes. The Borland C++ Builder 6.0 environment 

was used to combine the developed models, OpenGL visualization and simulation-based 

fitting algorithms into a software tool called FRETsim. The C++ classes and software are 

available from the authors upon request. 

3.3.4.  Handling of the Stokes shift information 

The fluorescence emission of molecules in different solvents is significantly affected 

by the solvent polarity. The shift in fluorescence emission with respect to the absorption (and 

therefore the dependence of emission spectra with respect to polarity of the local 

environment) is called the Stokes shift (Lakowicz, 1999; Ren et al., 1999; Valeur, 2001). The 

dependency of the fluorescence emission maximum with respect to the polarity of the local 

environment of AEDANS-labeled cysteine mutants of M13 major coat protein incorporated in 

lipid bilayers was discussed recently (Koehorst et al., 2004; Spruijt et al., 2004). Therefore, 

we decided to use the Stokes shift information as an additional filtering for the structures 

obtained after fitting of the FRET data. 

Unfortunately, analytical expressions, describing the behavior of the Stokes shift exist 

only for the internal hydrophobic part of lipid bilayers (Koehorst et al., 2004). However, a 

monotonic behavior of the polarity with respect to the absolute value of the z-coordinate of 

AEDANS in a bilayer system is demonstrated (White and Wimley, 1999). This result is 

probably related to the presence of motional averaging in the liquid crystalline phase (we are 

working with bilayer systems above the gel-to-liquid crystalline phase transition temperature). 

The possible effects of different polarity of neighbor amino acid residues can be neglected in 

our case, because of a long link between AEDANS moiety center and the protein backbone. 

This monotonic behavior enables us to build qualitative rules characterizing the relative z-

coordinates for a polarity probe that can be applied for sites on the protein in the headgroup 
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region of the membrane or in the water phase. For example, consider two mutants with 

AEDANS emission maxima at wavelengths λ1 and λ1, and λ1<λ2. Consequently the relation 

for the z-coordinates of the fluorescent labels |z1| < |z2|, is also true. This relation can be 

considered as a qualitative rule: "the AEDANS position in the first mutant is closer to the 

membrane center then of the second mutant".  

Three types of qualitative relations were selected to describe the positions of 

AEDANS in various mutants, each associated with a characterizing number ∈[–1, 0, 1]. 

These numbers can be combined into a matrix M, presenting the polarity rules for all mutants 

that are taken into account. The matrix elements Mij describe the relation between the depth of 

i-th and j-th mutant. Assuming constant data precision for all mutants and denoting the 

maximal spread in the determined λ values as ∆λ, the value of element Mij is set according to 

the following scheme:  

- if ∆λi –∆λj > ∆λ ⇒ |zi| > |zj|, Mij = 1; 

- if |∆λi –∆λj| ≤ ∆λ ⇒ |zi| ≈ |zj|, Mij = 0; 

- if ∆λi –∆λj < –∆λ ⇒ |zi| < |zj|, Mij = – 1. 

The resulting matrix is symmetric with zero diagonal elements.  

To quantify the deviation between experimental relations and modeled ones, the 

following parameter is introduced 

∑ ∑
−

= +=

−=
1

1 1

*
m

i

m

ij
ijij MMδ ,     (3.8) 

where Mij
* – is the matrix element describing  relations obtained from the model of the protein 

for i-th and j-th mutant.  

In our approach, the value of δ is used for an additional validation of the results 

coming out from the simulation-based fittings. 

3.4. Results 

3.4.1.  Analysis of FRET data 

We started the study of the protein structure with a simultaneous analysis of all eight 

data series, measured for AEDANS at positions 7, 9, 12, 13, 15, 16, 17, and 18. The best-

achieved fit, characterized by χ2 = 0.074 is presented in Fig. 3.3 by dotted lines. It can be seen 

that the simulation results for the acceptor at positions 7 and 9 clearly show a significant 
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deviation between simulated and experimental data points. This deviation cannot be explained 

by small concentration inaccuracies in our sample preparation (Fig. 3.3 A, B). Moreover, the 

high contribution of positions 7 and 9 to the χ2 value results in imperfections of the fit for 

positions 12-18, because the global optimization algorithm tries to decrease the large 

deviations for positions 7 and 9, rather than to precisely fit all data.  

These high deviations lead to the conclusion that a rigid two-helical model cannot 

describe the protein structure around positions 7 and 9. Therefore it was decided to exclude 

positions 7 and 9 from the final data analysis and concentrate our research on the data from 

acceptor positions 12-18. To deal with possible local minima and the stochastic nature of χ2, 

the fitting was performed with different initial estimations for 500 times. The best fit is shown 

in Fig. 3.3 by solid lines. The exclusion of positions 7 and 9 leads to a significant decrease of 

χ2: the minimal χ2 value obtained now is 0.008, which is a factor of 10 smaller than for the 

previous case.  

As in our previous study (Nazarov et al., 2006), we took into account only the best 

20% of all solutions found with χ2 ∈[0.008, 0.022] and discarded solutions with χ2 ∈[0.022, 

0.203]. This results in 100 solutions with a good fit to the FRET data (Fig. 3.4 A). Despite the 

high quality of the fit, a significant uncertainty remains in the angular parameters that 

describe the tilt and orientation of the N-terminal helix: ϕ =15 ±13°, ξ = –161 ± 99°, and ω = 

61 ± 62°. However, the resulting lipid loss parameter L = 0.20 ± 0.04 is quite well defined. To 

reduce the uncertainty in the angular parameters found, we decided to use additional 

information coming from the positions of the acceptor fluorescence maxima. Therefore a 

filtering of the solutions was performed based on the Stokes shift information (Koehorst et al., 

2004). 

3.4.2. Solution filtering using Stokes shift information 

Applying the methodology described in section 3.3.4 to the experimental acceptor 

fluorescence maxima in Table 3.1 and the resulting protein structures, we were able to filter 

the solutions by discarding those that do not satisfy the δ criterion (Eq. 3.8). For the resulting 

100 solutions, the value of δ varied between 1 and 20. We decided to take into account only 

solutions with δ ≤ 2, which was true for ~50% of the set of solutions (this corresponds to 

~10% of the entire set of solutions); the other solutions were discarded. The final set of 

resulting structures is presented in Fig. 3.4 B. In this figure the two α-helical domains of the 

protein are shown with solid lines and the “unstructured” region between amino acid residues 

1-9 is indicated as a gray cloud.  
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Figure 3.3. Experimental energy transfer efficiencies E (filled dots) and their approximation by 
the model (dotted and solid lines) after global analysis versus the ratio between unlabeled and 
labeled proteins rul. The mutant names are given in the right top corner of each plot. Dotted line 
corresponds to initial fit of data for acceptor label positions 7-18. Solid line presents efficiencies 
obtained after fitting data for acceptor label positions 12-18. 
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Figure 3.4. (A) Resulting 100 structures obtained from global analysis of experimental FRET 
data of M13 coat protein in DOPC:DOPG vesicles. The structures are presented in terms of Cα 
positions that are projected on the plane formed by the OZ axis and the direction of tilt of the 
transmembrane domain. The protein domain from amino acid residue 1 to 9 cannot be described 
by a rigid α-helix and is presented as a “cloud” containing several gray “unstructured” 
conformations. (B) Final set of 52 structures obtained after fitting of experimental data and 
filtering using Stokes shift information. The resulting tilt angle of the N-terminal domain 
ϕ = 5.0 ± 4.7°.  

The final set of resulting structures indicates a titled I-shaped protein. A kink is 

determined at position nk = 20 ± 2, however, the tilt angle of the two protein domains between 

amino acid residue position 10 and nk is small: ϕ = 5.0 ± 4.7°. The filtering of the solutions 

also results in a strong decrease in the uncertainty of the other angular parameters: ξ = –

140 ± 43° and ω = 42.1 ± 10°. This result indicates that there is a small tilt ϕ of the N-

terminal helix with respect to the transmembrane domain. For such a small tilt, the N-terminal 

helix tilt direction ξ is not a sensitive parameter, since it describes a small wobble of the N-

terminal domain with respect to the transmembrane domain. For an ideal continuous α-helix 

from the transmembrane to the N-terminal domain ω would be 0°. The resulting value of ω 

indicates a relatively small distortion of an overall helix at the kink position. 
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3.5. Discussion 

Despite intensive studies, the structure of the membrane-bound state of the M13 major 

coat protein is still unknown. This is largely due to the difficulty in determining the structure 

of the N-terminal protein domain. In the literature all sorts of structures are proposed: I-shape 

(Vos et al., 2005), L-shape (Marassi and Opella, 2003),  dynamic (Papavoine et al., 1998; 

Papavoine et al., 1997), and banana-shape (Spruijt et al., 2000). One of the possible causes of 

such diversity is the difference in lipid environments. For example, in the solid-state NMR 

study of Marassi et al. (Marassi and Opella, 2003) the proteins were inserted into dehydrated 

lipid bilayers. This can lead to squeezing of the proteins and may result in L-shape structures 

(Vos et al., 2005). Therefore, it is not surprising that in the literature there is not a consistent 

view about the orientation and tilt of the N-terminal protein domain. It could even be that this 

domain has no rigid structure and dynamically exchanges between several conformations 

(Meijer et al., 2001b; Stopar et al., 2002). In our present study, we aimed at minimizing 

possible artifacts coming from unnatural environments (dehydrated bilayers, micelles) by 

working at relatively low protein concentrations (high lipid-to-protein ratios) in large 

unilamellar vesicles. Under such conditions, the application of FRET is ideal, since the 

technique has a high sensitivity. In the present work, FRET is especially aimed at the problem 

of the determination of the structure of the N-terminal domain, by taking 

AEDANS(acceptor)-labeled cysteine mutants in this protein domain and using the natural 

Trp26 as a donor. To analyze the FRET data, we extended our previous single helix model 

describing the transmembrane domain of M13 coat protein (Nazarov et al., 2006) to a model 

of two helical domains that are connected by a helix kink, i.e. the position of the amino acid 

residue from which the N-terminal helix starts. Furthermore, we took into account the polarity 

Stokes shift of the AEDANS fluorescence maxima is taken into account by the application of 

“fuzzy rules” in our data analysis.  

The N-terminal protein domain is dominated by the presence of negatively charged 

amino acid residues (Glu2, Asp4, and Asp5), which will always try to extend into the aqueous 

phase and therefore act as a hydrophilic anchor (Stopar et al., 2006a). Furthermore, there is a 

Pro at position 6 (a helix breaker). Therefore, we limited our study to a range of site-directed 

AEDANS labels attached to the protein from positions 7 to 18. In this range, we decided to 

leave out positions 11 and 14, since in previous work it was found that these AEDANS-

labeled mutants showed an anomalous behavior in the analysis of the fluorescence maximum 

(Spruijt et al., 2000). Taking into account the yield, quality and availability of mutants, this 

resulted in eight labeled positions: 7, 9, 12, 13, and 15-18. To discriminate between 
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intramolecular energy transfer of acceptor-labeled proteins and intermolecular energy 

transfer, a titration with wild type proteins was performed (Nazarov et al., 2006). 

Intramolecular energy transfer efficiency is mainly sensitive to the distance between Trp26 

and the AEDANS label in one protein molecule, whereas intermolecular efficiency is related 

to distances between planes, in which donors and acceptors are distributed in the membrane-

protein system. In the case of our protein-lipid system, it is not possible to get the protein 

structure only from intramolecular FRET, since this turns out to be an ill-defined problem. 

This comes from the fact that we have only a single donor position (the Trp26). The result 

would not be a single structure, but an infinite number of structures with equal intramolecular 

distances. 

The structure of the protein is studied using a simulation-based fitting approach, which 

means an adjustment of all variable parameters of the model to fit the simulated data to 

experimental ones. In this fitting analysis, the parameters that describe the transmembrane 

helix are taken from our previous FRET study (Nazarov et al., 2006), whereas only the 

parameters describing the kink position, tilt and orientation of the N-terminal helix domain 

are varied in our simulations (i.e. nk, ϕ, ω, ξ, and L). From the spatial model of the membrane-

protein system the coordinates of donors and acceptors are obtained and used to calculate 

energy transfer efficiencies. To make the analysis more stable we used a global analysis 

approach, and fit all the data points using the same model (changing only experimental 

conditions, such as acceptor position nA, and concentration-dependent ratios rLP and rul). A 

validation of our approach is given in Appendix A, where several numerical tests are 

described and analyzed to determine the precision of the parameters determined. The results 

indicate that the method can easily distinguish between I- and L-shape protein structures and 

allows a precise determination of L, nk, and ϕ. 

Interestingly, in the global analysis of the complete experimental data set, it is found 

that in our DOPC:DOPG vesicles positions 7 and 9 show a large deviation, indicating that 

these positions do not fit to the two-helical model. This is consistent with a recent site-

directed spin labeling study of M13 coat protein in phospholipid bilayers with increasing acyl 

chain length (Stopar et al., 2006b). In this work it is found that the N-terminal domain 

contains 7 unstructured amino acid residues in 22:1PC and 14 residues in 14:1PC. Therefore, 

it is reasonable to assume that position 7 and 9 are in a flexible or unstructured part of the N-

terminal protein domain, for which the rigid helix model does not apply. Consequently, our 

final analysis was based on a global analysis, excluding positions 7 and 9. The exclusion of 
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these positions results in a dramatical reduction of the value χ2, suggesting that for the 

remaining amino acid residues M13 coat protein is well described by a rigid two-helix model. 

To decrease the uncertainty in the angular parameters ϕ, ω, and ξ we used an 

additional filtering criterion δ, based on the polarity shift of the AEDANS fluorescence 

maxima. By applying the “fuzzy rules” polarity criterion given in Eq. 3, we assume that from 

two AEDANS labels the furthest to the bilayer center is one that has a more red shifted 

fluorescence (larger Stokes shift). The application of this criterion allows us to discard 

roughly a half of the solutions, and to more precisely determine the average tilt angle of the 

N-terminus. This can be seen by comparing Fig. 3.4 A and B, where the two α-helical 

domains of the protein are indicated with solid lines and the proposed “unstructured” region 

between amino acid residues 1-9 is drawn as a gray cloud. The best fitting (in terms of both – 

FRET and Stokes shift) structures for M13 coat protein embedded in DOPC:DOPG vesicles 

are collected in Fig. 3.4B. Overall, the protein is in a tilted α-helical state from positions 12 to 

46 (i.e. the labeled mutants that we investigated here and in (Nazarov et al., 2006)). There is a 

small kink around position 20, which could indicate that the protein has a weak region in the 

helix here. 

In summary, it can be concluded that the membrane-bound state of the M13 coat 

protein, showing an overall α-helical conformation, is close to the protein conformation in the 

intact phage. Such a conformation can be expected to enable a fast and efficient incorporation 

during the membrane-bound phage assembly of M13 bacteriophage. Probably the overall tilt 

of the protein is related to an efficient anchoring and integration of the protein in the 

membrane (Stopar et al., 2006a). Now the structure of the coat protein in a membrane 

becomes evident, future questions about the membrane-bound phage assembly should address 

the dissociation of the coat protein from the membrane, i.e. studying the process of lifting the 

membrane anchors (Stopar et al., 2006a). 

We are currently working on further enhancements of our model. One approach that is 

based on recent findings of Vos et al. (Vos et al., 2005), is to implement the entire AEDANS 

conformational space for each mutant instead of assuming a constant acceptor arm normal to 

the helix axis. A further improvement of the precision of our model can be achieved by using 

all fluorescence data of the AEDANS probe in a general global optimization algorithm. The 

methodology developed here is not limited to the structure determination of M13 major coat 

protein and can be used in principle to study the bilayer embedment and structure of any 

protein (or peptide) for which a one or two-helix model can be applied (Sparr et al., 2005), 

and with some adaptations to larger membrane proteins.  
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3.6. Appendix A. Sensitivity of the model parameters and noise 
stability 

To determine the sensitivity to the model parameters and the noise stability the 

following procedure was employed. For each of the two published structures of M13 major 

coat protein, I-shape (Vos et al., 2005) and L-shape (Marassi and Opella, 2003), artificial 

FRET data were generated by our model and then used instead of experimental data in the 

simulation-based fitting algorithm. Because of the stochastic behavior of the χ2 function the 

fitting algorithm provides a distribution of solutions for the global minima. The spread of a 

parameter in this cluster of solutions allows characterizing its sensitivity. To study the 

experimental noise effects on the parameter distribution, the same operation was performed 

on data containing artificial noise, similar as is described in our previous work (Nazarov et al., 

2006). The standard deviation of the noise varies for each data point (see error bars in 

Fig.  3.3). 

The results of the numerical tests are given in Table 3.3. For an ideal α-helix the 

algorithm was able to determine the precise structure for the considered range of amino acid 

residues (12 to 26).  

For all solutions in the “elite” set (20% of solutions with smallest χ2) nk<12, which 

means that an ideal helix was found for positions 12 to 26. The introduction of noise to the 

artificial data did not change this tendency. For an L-shape protein structure the parameters L, 

nk, and ϕ were determined quite well, although the noise in the artificial data increased the 

uncertainty for almost all parameters. The angular parameters ω and, especially ξ, showed a 

rather high spread. However, the mean values of the parameters found still were close to the 

initial values. 
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Table 3.3. Original and calculated values of the model parameters after analysis of synthetic FRET 
data by means of a simulation-based fitting approach. 

Parameter Original value in 
synthetic data 

simulation 

Value found after analysis 
with no noise added to 

synthetic data 

Value found after analysis 
with additional noise in 

synthetic data 
I-shape protein (ideal α-helix between positions 12 to 26) 

L 0.2 0.20 ± 0.01 0.19 ± 0.02 
nk < 12 < 12  < 12  
ϕ 0° 0° 0° 
ω 0° 0° 0° 
ξ 0° 0° 0° 

L-shape protein (Marassi and Opella, 2003) 
L 0.2 0.21 ± 0.02 0.19 ± 0.04 
nk 20 20 ± 1 20 ± 1 
ϕ 110° 107 ± 9° 104 ± 14° 
ω 40° 48 ± 12° 53 ± 21° 
ξ -110° -115 ± 17° -120 ± 37° 
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ABSTRACT 

Simulation-based fitting has been applied to data analysis and parameter determination 

of complex experimental systems in many areas of chemistry and biophysics. However, this 

method is limited because of the time costs of the calculations. In this paper it is proposed to 

approximate and substitute a simulation model by an artificial neural network during the 

fitting procedure. Such a substitution significantly speeds up the parameter determination. 

This approach is tested on a model of fluorescence resonance energy transfer (FRET) within a 

system of site-directed fluorescence labeled M13 major coat protein mutants incorporated into 

a lipid bilayer. It is demonstrated that in our case the application of a trained artificial neural 

network for the substitution of the simulation model results in a significant gain in computing 

time by a factor of 5x104. Moreover, an artificial neural network produces a smooth 

approximation of the noisy results of a stochastic simulation. 

4.1. Introduction 

Simulation-based fitting (SBF) has recently become a standard tool for the analysis of 

experimental data to extract the real parameters of, for example, chemical (Mendes and Kell, 

1998; Yatskou et al., 2001a; Yatskou et al., 2001b) and biophysical systems (Berney and 

Danuser, 2003; Frederix et al., 2002). The idea of SBF is the approximation of experimental 

data by synthetic data obtained via simulation modeling. In comparison to standard analytical 

data fitting techniques, SBF has the advantage that it fits natural physical and chemical 

parameters of the system itself and gives a direct insight in how they affect the experimental 

characteristics of the system (Yatskou et al., 2001b).  
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However in practice SBF has several limitations. The most crucial problem is that 

simulation modeling usually is a very time-consuming operation, which results in a long 

fitting time. In some cases this approach is not useful at all, because the time of optimization 

becomes non-realistic (from months to years). The origin of another weak point often lies in 

the stochastic nature of both simulation and experimental data. This results in a very complex 

behavior of the discrepancy function and the introduction of a large number of local minima 

(Apanasovich et al., 2000).  

The aim of our study is to develop and present solutions for these problems. Here we 

propose to use an artificial neural network (Bishop, 1995; Wasserman, 1989) (ANN) to speed 

up the parameter identification and to make the process of fitting less stochastic. The main 

idea of the method is the substitution of a simulation model by an ANN (specifically a multi-

layer perceptron (Bishop, 1995; Stegemann and Buenfeld, 1999; Wasserman, 1989) ) during 

fitting. Because of the simplicity of the multi-layer perceptron structure and the internal 

mathematics, the computation time needed for the calculation of neural network outputs is 

much less than for simulation modeling. Hence, the replacement of a simulation model by a 

multi-layer perceptron leads to a considerable speeding up of all calculations. 

The proposed approach of the neural network approximation was tested on a 

simulation model of resonance energy transfer (Lakowicz, 1999) between fluorescent labels 

of bacteriophage M13 major coat proteins incorporated into a lipid bilayer.  

4.2. Theory 

4.2.1.  Principles of SBF  

The SBF approach was developed for the determination of physical and chemical 

parameters of complex systems, which cannot be completely described by analytical 

expressions. Let us consider the idea of SBF on the following general example. A complex 

(physical or chemical) system Θ can be characterized by a vector of parameters P = (p1, p2, 

p3, …). These parameters can be regarded as input parameters of the system Θ. After a 

number of experimental studies on the system Θ are carried out with different input 

parameters, the vector of output values F can be obtained. In this case, the system can be 

considered as an operator performing the following operation: 

FPppp == )(,...),,( 321 ΘΘ .    (4.1) 
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Usually, some input parameters are known. Let us denote them P0, for example let P0 

= (p1, p2). Other parameters, which should be extracted, are denoted as PX , suppose PX = (p3, 

p4, …). The vector of input parameters therefore includes a combination of known and 

unknown parameters P = (p1, p2,  p3,  …) = (P0, PX). The extraction of PX is the aim of the 

analysis. 

Let us assume that for system Θ it is possible to build an adequate simulation model, 

which performs operation (4.2) with the same physical parameters P. 

*
0 ),()( FPPP X =≡ ΞΞ ,     (4.2) 

where F* contains the simulated output values, which should approximate the experimental 

ones.  

The determination of the unknown parameters PX is carried out in the form of SBF. 

The flow diagram of this method is shown in Fig. 4.1. 

 

1. Known 
experimental  

parameters P0

4. Initial estimation
PX

*

2. Experimental 
system

with unknown 
parameters PX

Ω (P0,PX)=F

3. Experimental data
F

6. Simulated data
F*

5. Simulation model

Ξ (P0,PX
*)=F*

7.
Is the error ||F-F*||

acceptable?

8. Modification of 
PX

*

9. Found estimation 
PX

* ≈ PX

Yes

No

 

Figure 4.1. Flow diagram, demonstrating simulation-based fitting approach (see text). The thick 
line shows the fitting loop. 

The following steps can be identified in SBF: 

1. Output values F are obtained experimentally (see blocks 1-3).  

2. An adequate model Ξ of system Θ, which performs operation (4.2), is created 

(block 5). 

3. An initial estimation PX * is made for PX (block 4).  
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4. An optimization algorithm, using a variation of parameters PX
*, minimizes the 

discrepancy function ||F*–F|| (blocks 6-8 and 5 again). 

5. Finally, the fitted parameters PX
*, which should estimate the experimental parameters 

PX, are obtained (block 9).  

As was mentioned before, the main problem of SBF is its time expenses. We solve this 

problem by the application of an ANN, which approximates and substitutes the simulation 

model during SBF. 

4.2.2.  ANN approximation  

As was shown independently by Cybenko (Cybenko, 1989) and Hornik (Hornik et al., 

1989), continuous smooth functions can be uniformly well approximated by linear 

combinations and superpositions of sigmoid functions, i.e. by a multi-layer perceptron. This is 

the most common class of ANNs (Cybenko, 1989; Hornik et al., 1989; Stegemann and 

Buenfeld, 1999; Tetko et al., 1995; Wasserman, 1989). Concerning the application of ANNs, 

three layer perceptrons have better learning abilities than two layered ones (Wasserman, 

1989). 

Most relationships in chemistry and physics can be represented by continuous 

functions (if they have a stochastic nature – let us speak about their mean). This gives the 

possibility to approximate the simulation model Ξ by a multi-layer perceptron. Let us denote 

this approximating ANN transform as Ψ. It performs the operation 

**
0 ),( FPP X =Ψ ,      (4.3) 

where F** is the neural network approximation of the output values of the system. 

Hence, instead of the simulation model Ξ, the neural network approximation Ψ can be 

used during parameter fitting. The suggested ANN approach to parameter determination is 

illustrated in Fig. 4.2. In this case, the ANN operates as a black-box model of system Θ. 

In this approach the following steps can be identified: 

1. Output values F are obtained experimentally (see blocks 1-3). 

2. An adequate model Ξ of system Θ, which performs operation (4.2), is created 

(block 5). 

3. A representative set of points {P} in the parametric space is generated (block 10) and 

the corresponding simulation values are calculated {F*}. This sets form the training 

set {P, F*} (block 11). 

4. The ANN is trained (block 12). 
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5. An initial estimation PX * is made for PX (block 4).  

6. An optimization algorithm, using a variation of parameters PX
*, minimizes the 

discrepancy function ||F**–F|| (blocks 6-8 and 13). 

7. Finally, the fitted parameters PX
* ≈ PX are obtained (block 9).  

 

1. Known experimental  
parameters P0
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PX

*

3. Experimental data
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6. ANN simulated 
data F**

8. Modification of 
PX

*

9. Found estimation 
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5. Simulation model
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13. Artificial neural 
network (ANN)
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2. Experimental 
system

with unknown 
parameters PX

Ω (P0,PX)=F

 

Figure 4.2. Flow diagram of simulation-based fitting with artificial neural network 
approximation. The dotted box shows the extension of the simulation-based fitting method (see 
Fig. 4.1) by the artificial neural network fitting procedure.  

4.3. Computational 

4.3.1.  Optimal selection of parameters for the training set 

Being replaced by an approximating ANN, the simulation model is used only for 

initial training of the ANN. The step of the generation of the ANN training set now becomes 

the most time-consuming part in the proposed scheme in Fig. 4.2, because to obtain each 
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element of this set the relatively slow simulation should be executed. Furthermore it is of 

crucial importance for a good approximation to have a representative training set. Therefore 

to increase the efficiency of a training set, it is necessary to use an algorithm to generate a 

representative set of parameter points (each point corresponds to a single vector of parameters 

P describing the system), which are maximally spread in the multidimensional parameter 

space together with a minimal number of points. Furthermore, to be most flexible, the 

algorithm should make it possible to increase the number of points without any penalties.  

In the present work, the following scheme was developed and applied for the selection 

of points. It is assumed that each parameter is normalized to the range [0, 1].  

1. A set of “boundary” points was generated. For every parameter three values were 

taken: minimal, maximal and mean. Then all their combinations where taken into 

account. 

2. Main training set generation. Here points are chosen by the following algorithm 

a. Let n be the dimensionality of the parametric space, and N the number of 

found points. The constant a =1 is preset.  

b. A point with random parametric coordinates is taken.  

c. The distance d from the new point to all previously generated points is 

calculated.  

d. If the following condition is true 

n N
ad

1
 )(min

+
> ,     (4.4) 

the point is accepted and N is increased by 1. Else, the algorithm checks how 

many unsuccessful attempts were made before, and if there was a sufficient 

number of such attempts (in our experiments – 1000), the value of a is 

decreased by 10%. 

e. The stopping criterion is checked. If it is false, the algorithm goes to step 2.b.  

To illustrate the scheme, a space of two-parameters was taken (n=2). The resulting 

points in comparison with randomly selected ones are shown in Fig. 4.3. Obviously, the 

application of the scheme allows a uniform infill of the two-dimensional parameter space. The 

infill itself remains random and can easily be continued. Furthermore, the application of such 

an approach to the generation of points gives the possibility to select the most distant points of 

the control set during ANN training (see section 4.3.3) and allows to avoid the selection of 

points with equal “parametric coordinates”. This is important for generalizing the ANN. 
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A B 

Figure 4.3. Illustration of the principle of point selection in a two-dimensional parameter space. 
Uniformly distributed random points are shown in (A). Points obtained by the proposed 
algorithm are presented in (B). 

4.3.2.  ANN structure  

In our research the optimal number of neurons was estimated using the exhaustive 

search method. In this method, the number of neurons in the first and second hidden layers 

were optimized. For each number of neurons the ANN was trained for a fixed number of 

iterations and the resulting training error was calculated. To obtain a statistically valid value 

for the training error, the training was repeated independently for several times. After all 

possible combinations of neuron numbers within the region of search, the one with the lowest 

training error was taken as optimal. The optimal number of neurons found depends on the 

complexity of the model. These numbers are given in Table 4.2 (see section 4.5). 

4.3.3.  Training of the ANN  

Upon training of the multi-layer perceptron two rather contradictory conditions should 

be satisfied. From the one side the mismatch between desired and obtained outputs should be 

decreased. From the other side an ANN should not lose its generalization abilities (Stegemann 

and Buenfeld, 1999). An excessively long training results in a sliding of the ANN coefficients 

to a local minimum. This makes the approximation worse in points that do not belong to a 

training set. This phenomenon is called overtraining (Stegemann and Buenfeld, 1999; Tetko 

et al., 1995). Therefore, a special training strategy, based on the generation of an additional 
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small control set, was applied to deal with this problem. After each epoch of training the 

performance of the ANN is verified on this control set. The training is terminated if the 

performance does not change or decrease for a certain number of epochs (Tetko et al., 1995). 

Numerical calculations were performed to determine the optimal size of the control set. The 

training set was separated into an actual training set and a control set with the following 

ratios: 90%-10%, 85%-15%, 80%-20%, 75%-25%, and 70%-30%. For the 3-parametric 

model the best performance was obtained for the 80%-20% ratio, for the 4-parametric model 

this was 75%-15%, and for the 5- and 6-parametric model the ratio 90%-10% gave the best 

results. The application of the proposed method of training set generation (section 4.3.1) 

allows a simple separation procedure: the last generated elements of the training set should be 

taken for the control set. 

In our calculations the ANN is trained by the back propagation error algorithm with 

the Levenberg-Marquardt optimization technique (Hagan and Menhaj, 1994). 

4.4. Experimental objects and methods 

The proposed approach of the neural network approximation, as shown in Fig 4.2, was 

tested on a simulation model of fluorescence resonance energy transfer (FRET) between 

fluorescent labels of bacteriophage M13 major coat protein mutants incorporated into a lipid 

bilayer.  

4.4.1.  FRET  

The idea of FRET spectroscopy is based on a dipole-dipole radiationless energy 

transfer and was initially developed by Förster (Förster, 1948) and further enhanced by Stryer 

(Stryer, 1978). Macromolecules studied (in our case – membrane proteins) are labeled with 

fluorescent probes of two types: donors and acceptors (Lakowicz, 1999). The emission 

spectrum of the donor and the absorption spectrum of the acceptor should overlap. Donors are 

excited by an external light source and some of them transfer excitation energy to acceptors 

due to dipole-dipole radiationless energy transfer. The probability of energy transfer for an 

isolated donor-acceptor pair is: 

( )6
01

1
Rr

pET +
=  ,     (4.5) 
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where r is the distance between the donor and the acceptor, and R0 is the so-called Förster 

distance, which corresponds to 50% energy transfer probability via dipole-dipole interaction 

(Förster, 1948). For a system containing nA acceptors, the expression for the energy transfer 

becomes somewhat more complex: 
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The mean probability of energy transfer in the system, containing nD donors and nA 

acceptors, is called the energy transfer efficiency and can be calculated as a mean value of 

energy transfer probabilities for all donors: 

∑
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By observing the energy transfer process one can get information about the relative 

location of donor and acceptor labels. 

4.4.2.  Biophysical protein-lipid model  

The membrane-bound major coat protein of M13 bacteriophage, which infects E. coli, 

is an excellent model system to study fundamental aspects of protein-lipid and protein-protein 

interactions. This single membrane-spanning protein consists of 50 amino acid residues and 

has mainly an α-helical conformation. The protein has been extensively studied in membrane 

model systems by biophysical techniques (Meijer et al., 2001a; Spruijt et al., 2000; Stopar et 

al., 2002; Stopar et al., 2003). 

For FRET studies, the natural amino acid residue tryptophan of M13 major coat 

protein at position 26 was used as a donor label. To introduce an acceptor label to the protein, 

a number of mutants, containing unique cysteine residues at specific positions, was produced. 

The cysteine residues were specifically labeled with the fluorescent environmental probe N-

(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonic acid (AEDANS) (Spruijt et al., 2000). 

This fluorescent label was used as an acceptor. Since the labeling efficiency with AEDANS is 

less than 100% the entire protein-lipid system contains proteins of two types: unlabelled 

proteins – with the natural donor, and labeled ones – with both donor and acceptor.  
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To study such a complex system the following simplified spatial model was designed. 

The biological membrane is approximated by a two-dimensional periodic structure with a 

hexagonal packing of the lipids in which the M13 coat protein mutants are distributed (Fig. 

4.4 A). The area occupied by each membrane protein on the membrane surface is assumed to 

be equal to that of two lipids. It is assumed that the distance between two nearest molecules 

on the grid is 8.0 Å and the thickness of the lipid bilayer is 30 Å. The α-helical M13 coat 

protein mutants are approximated by rods with a constant location of the donor (D) and a 

variable location of the acceptor (A) (see Fig. 4.4 B). 

 

  

 

A B 

Figure 4.4. Model of a membrane (A) and a membrane protein (B) with fluorescent labels. The 
non-labeled protein only contains a tryptophan. The protein mutants have acceptor label 
(AEDANS) at various positions along the protein structure. The protein is assumed to be α-
helical. 

4.4.3.  Simulation of energy transfer  

The input parameters of the model are presented in Table 4.1. The ranges listed in this 

table are selected such that they are physically valid, and cover all possible experimental 

situations.  

In the experimental situation, parameters 1-3 and 6 are known (some of them within a 

small experimental inaccuracy), thus they can be regarded as P0 in terms of the parameter 

description in section 4.2. However, in general the separation of the parameters in Table 4.1 

into P0 and PX depends on the situation. For instance, for the three-parametric model 

parameters 1 and 2 can be used as PX, and parameter 3, which is known precisely, as P0. It 

should be mentioned that the three-parametric model was used only for the validation of the 
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methodology. For the 4-parametric model, the coefficient of protein association becomes the 

subject of interest (PX), while parameters 1-3 are the known parameters (P0). 

Table 4.1. Input parameters of the simulation model. 

Number Parameter Description Range 
1 Surface density 

of labeled 
proteins 

The ratio of the area occupied by labeled proteins 
(containing the donor and acceptor) to the area of 
the entire membrane. 

0.0001 ÷ 0.1 

2 Surface density 
of non-labeled 

proteins 

The ratio of the area occupied by non-labeled 
proteins (containing only donor) to the area of the 
entire membrane. 

0.0001 ÷ 0.1 

3 Labeling site The amino acid residue number to which the 
acceptor is attached. 

1 ÷ 50 

4 Coefficient of 
protein 

association 

The probability that a selected protein is located in 
the immediate proximity to another one. 

0 ÷ 1 

5 Size of molecules The minimal distance between the centers of 2 
nearest molecules (proteins and lipids). 

5 ÷ 10 Å 

6 Förster distance 
 

Donor-acceptor distance (for an isolated pair) 
corresponding to 50% energy transfer. 

1 ÷ 100 Å  
 

 

The fluorescence intensity and energy transfer efficiency for the entire protein-lipid 

system are taken as output values (F in terms of the description in section 4.2). Because of the 

simulation nature of the model, the resulting output contains stochastic errors. Therefore 

simulations are run several times to reduce these errors. The flow diagram of the simulation is 

shown in Fig. 4.5.  

The simulation is carried out in the following way: 

1. The parameters of the system are set (block 1).  

2. A spatial model of the membrane with embedded proteins is created in accordance 

with the input parameters. The coordinates and orientation of the proteins provide 

information about the locations of donors and acceptors in the system (block 2). 

3. For each donor (denoted as iD) the distances to all acceptor are considered and the 

probability of energy transfer (to any of them) is calculated using Eq. 4.6 (blocks 3-5).  

4. The mean probability of energy transfer among all donors results in the energy transfer 

efficiency for the whole system. 

5. Steps 2-4 (and blocks 2-6 in the flow diagram) are repeated for several times to 

decrease the effect of the randomness of the protein distribution. In our calculations 

we used an empirical value of 104/nD simulations, where nD is the number of donors. 
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Additional simulations using this model and experimental FRET data will be 

published elsewhere (see Chapter 2 and 3). 

 

1. Setting of input 
parameters; 

nD – number of donors 
iD = 0

4. Calculation of probability of 
energy transfer to any acceptor 

pET(iD). See eq. 4.6

5. iD=iD+1

2. Building of spatial 
model (virtual 

placement of proteins 
into a membrane)

3. iD<nD ?

yes

no6. Resulting 
E=<pET>

 

Figure 4.5. Flow diagram of a single simulation of energy transfer in a protein-lipid system.  

4.5. Results and discussion 

4.5.1.  ANN configuration 

Before transferring the simulation model to the ANN, the input parameters (Table 4.1) 

were normalized to the range [0,1] by the simple linear mini-max method. Thus, input values 

0 correspond to minimal possible parameter values, and 1 to the maximal ones.  

The optimal number of neurons obtained experimentally varied with the number of 

input parameters. These numbers are presented in Table 4.2. 

After the number of neurons in the ANN was determined, it was trained as was 

described in section 4.3. To avoid overtraining, after each 10 epochs the ANN was tested on a 

control set. If the result of testing did not improve for 30 epochs, the training procedure was 

stopped. The resulting mean relative square error on the training set varied up to 2%. 
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Table 4.2. Optimal number of neurons in the ANN used. The input parameters are described in 
Table 4.1. 

Number of input values 3 4 5 6 
Model parameters 1-3 1-4 1-5 1-6 

Number of neurons in the 
first layer 

13 15 18 20 

Number of neurons in the 
second layer 

10 13 16 20 

4.5.2. Time costs  

All calculations in this article were made in MATLAB® 6.1 with the Neural Networks 

Toolbox on a PC with Intel Pentium III-850 CPU. The time costs of the ANN method 

application in this set up are shown in Table 4.3.  

Table 4.3. The time costs of the ANN approximation of the FRET simulation model. 

Number of parameters 3 4 5 6 
Time for generation of the 

training set 
11 hr 22 hr 56 hr 110 hr 

Time for training 6 min 10 min 14 min 20 min 
Time for ANN simulation 6.0×10-4 s 7.0×10-4 s 8.0×10-4 s 10-3 s 

Average time for 
simulation modeling 

40 s 40 s 40 s 40 s 

Average gain in computer 
time 

6.7×104 5.7×104 5.0×104 4.0×104 

 

From Table 4.3, it is clear that the generation of training sets is the most time-

consuming operation. However, it should be noted that this process does not need the 

supervision of a human and the training itself needs to be performed only once for each 

simulation model. The gain in computing time, which is about 5x104, does not decrease 

significantly with the increase of the network complexity. 

A typical illustration of the ANN approximation of the simulation model is shown in 

Fig. 4.6. Here the energy transfer efficiency is plotted as a function of the location of the 

acceptor. The oscillations in this plot arise from the α-helical nature of the protein model as is 

shown in Fig. 4.4 B. The relative deviation between the ANN approximation and the actual 

model calculation is less than 3%, showing that the ANN approximation performs very well. 
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A 

 

B 

Figure 4.6. ANN approximation of the simulation model (A) and relative deviations of the 
ANN result and the simulation model (B). In (A) the circles show the result of the simulation 
modeling and the line is the ANN approximation.  

4.5.3. Consistency of the approximation  

To obtain information about the consistency of the ANN approximation we conducted 

several statistical calculations on the 4-parametrical model. In these calculations we modified 

one of the model parameters – the association coefficient, and analyzed the deviation between 

the ANN approximation and the simulation modeling. In Fig. 4.7 A the energy transfer 

efficiency is plotted for various values of the protein association constant. The agreement 

between the ANN approximation and actual model calculation is good. 

Since the auto-correlation function, calculated from the deviations (Fig. 4.7 A), is 

close to a delta-function, we conclude that the deviations are not correlated and behave 

stochastically. The distribution of the deviations (Fig. 4.7 В) is close to a Gaussian line shape, 

indicating that the deviations are the result of the randomness of the simulation model. 
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 A 

B 

C 

 D 

Figure 4.7. Consistency of the ANN approximation. In (A) the thick gray line is the result of 
the simulation modeling and the thin black line is the ANN approximation. Below this graph the 
relative deviations between simulation model and approximation (B) and their autocorrelation 
function (C) are given. The distribution of deviations is given in (D). 
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It should be mentioned that a multi-layer perceptron with sigmoid activating functions 

produces a smooth approximation of a stochastic simulation model. This approximation does 

not contain stochastic noise. Thus, the fitting procedure operates with a less stochastic 

discrepancy function ||F–F**||, and therefore contains less local minima than in the case of 

stochastic simulation model fitting. 

4.6. Conclusions 

The use of a trained ANN in the biophysical modeling presented here results in a gain 

in computing time by a factor of 5×104. Moreover an ANN produces a smooth approximation 

of the results of a stochastic simulation. Thus it decreases the level of stochastic errors. Due to 

this smooth dependency it will simplify the application of standard optimization techniques, 

such as gradient search, for parameter determination. It was shown that the deviations 

between the actual model outputs and its ANN approximation have a stochastic nature. In our 

case the relative deviation was less than 3%.  

The approach used in our calculations has some imperfections. It works only when the 

number of variable parameters is relatively small (in our calculations up to 6). Furthermore 

the calculations related to the generation of the training set are quite time extensive, although 

they need to be performed only once for a simulation model.  

In conclusion, the method of ANN modeling is an excellent tool for determination of 

parameters of specific systems. In fact the method can be generalized to analyze any 

experimental system for which SBF can be applied. 
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ABSTRACT 

The method of data analysis in intracavity laser spectroscopy is considered. The 

artificial neural network was used as an analyzing tool for the determination of elements 

concentration in trace amounts samples using absorption spectra. The special neural network 

training algorithm based on simulation of experimental spectra was developed to solve the 

problem of non-sufficient experimental data set. The application of this method allows 

achieve the better sensitivity than conventional analytical methods and proved itself more 

robust. The proposed method was tested on spectra of Cs water solutions. 

5.1. Introduction 

Laser techniques are widely used for determination of trace amounts of elements, 

especially toxic and biologically significant, in environmental samples and human tissues. 

The intracavity laser spectroscopy method used in this work is one of the most sensitive 

analytical techniques. 

It was shown that advanced data processing based on digital filtering and regressive 

analysis improves the detection limits (Burakov et al., 2002). The mean-square error for the 

trace concentrations of cesium in water solutions was decreased to the value less then 10%. 

Unfortunately, practically available conventional analytical devices and linear data 

processing have reached their limits. The relationship between evaluated parameters and the 

experimental input parameters is nonlinear and very complex. It does not allow to eliminate 

all errors in experimental data. This is the reason to develop new approaches for data 

processing in the high-resolution spectroscopy. 

Adaptive nonlinear algorithms based on artificial neural networks (ANNs) are 

regarded in this contest as a very attractive tool. ANN is a data processing system consisting 

of a large number of simple highly interconnected processing elements. It utilizes the weight 

matrices to perform the mathematical transformation of the input vector to the output vector. 
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Special learning procedures are used to adjust the weight matrix for required relationship 

between input and output of ANN. It is quite different from the traditional computing system. 

ANNs have some remarkable properties such as flexibility, capability of learning and 

generalization. Special software tools for emulation of ANNs in conventional computers are 

available nowadays and this approach is becoming more and more popular (Bishop, 1995). 

The brief review of ANN implementation in data processing algorithms is presented in 

the next section. The intracavity laser spectrometer used as the experimental setup is 

described in the section 5.3.  

Experimental data and preprocessing technique are reviewed in the section 5.4. 

The neural network procedure for data processing is presented in the section 5.5. 

Finally the received measurement errors are estimated and conclusions are made in the last 

section 5.6. 

5.2. Neural networks as a data processing tool 

A solution of inverse problems is one of the most important attributes of spectroscopy. 

It was shown that ANNs allow solving both direct and inverse problems using standard 

experimental data involved in the calibration procedure. The unique opportunities of ANN 

were used for solving the following inverse problems (Gedova et al., 2002): 

- precise determination of water temperature from Raman spectra, 

- determination of small fluorescent contributions for components of an organic compounds 

mixture in water from their fluorescence spectra, 

- determination of molecular parameters of organic compounds from fluorescence spectra, 

- time-resolved kinetic spectroscopy performed with long excitation pulse and a detector 

with low temporal resolution. 

There are examples of applications of ANN for signal processing of transient atomic 

absorption signal (Kale and Voigtman, 1995), classification and recognition of spectra 

(Eghbaldar et al., 1998; Pulido et al., 1999; Ramadan et al., 2001; Schulz et al., 1995; 

Walczak, 1996), evaluation of extremely low concentrations of analyzed substances in soil 

(Schulz et al., 1995) and water samples (Apanasovich et al., 2001; Ruisanchez et al., 1997; 

Walczak and Massart, 1996a; Walczak and Massart, 1996b).  

Neural networks based on radial basis functions (RBF) were applied to the 

classification of visible and ultraviolet spectra and they were implemented in the auto-

diagnosis process of a flow injection analytical system. The classification error was 13%, 

which was a significant reduction compared with the 20% when using counterpropagation 
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neural networks as the classification technique. The importance of this reduction lies in the 

fact that the number of analytical errors which have a considerable effect on the system is 

reduced to half. The spectra did not have to be preprocessed to distinguish between the five 

classes and this means less extra work and a reduction in computation time. The training 

procedure is also simpler in the case of using RBF because there are fewer parameters to 

optimize. With counterpropagation neural networks the number of epochs, the number of 

neurons, the type of transfer function and the initialization of the weights have to be 

optimized but when using RBF only two parameters have to be optimized: the width of the 

radial functions and the number of neurons in the hidden layer (Pulido et al., 1999). Thus 

neural networks based on RBF proved to be a useful tool in the classification of ultraviolet 

and visible spectra. 

The same methodology with the backpropagation ANN (or multilayer perceptron, 

MLP) was used for encoding and pattern recognition of infrared spectra (Schulz et al., 1995). 

ANN were also used for determination of Ru in flow-injection analysis systems (Wang 

et al., 2001) and as catalyst for simultaneous determination V (IV) and Fe (II) through the 

single catalytic kinetic run (Safavi et al., 2001) due to high speed data processing. 

Counterpropagation (Ruisanchez et al., 1997; Schulz et al., 1995), backpropagation 

(Eghbaldar et al., 1998; Walczak, 1996) or RBF (Pulido et al., 1999; Walczak and Massart, 

1996a; Walczak and Massart, 1996b) neural networks my be used for achieving better 

accuracy depending on problem. Thus flexibility and universality of ANNs are the important 

advantages of the discussed approach.  

5.3. Experimental setup  

The intracavity laser spectrometer was used in the experiment. It consists of the four 

basic modules: dye laser, electrothermal atomizer with graphite furnace for liquid samples, 

high-resolution spectrograph and data processing system as it is shown schematically in the 

Fig. 5.1.  

The tunable dye laser is used as the primary light source. Being flash-lamp pumped it 

radiates a smooth broad-band spectrum in the range 440 - 700 nm. The spectrum width 

depends on a dye type and usually is 10 -15 nm. A Fabri-Perot interferometer in laser cavity 

was used in some cases for dye laser spectrum stabilization near an absorption line. With an 

interferometer the maximal width of a laser spectrum decreases to 1.0 - 1.5 nm. Laser pulse 

duration can easily be changed between 1 and 10 µs by variation of power supply parameters. 

For the measurement of dye laser pulse duration a silicon photodiode is used. 



ANN data analysis for intracavity laser spectroscopy                                Chapter 5 
 

 

 

110

 

 

Figure 5.1. Intracavity laser spectrometer: 1 - output cavity mirror, 2 - back cavity mirror, 3 - 
dye laser, 4 - laser power supply, 5 - laser control unit, 6 - dye pump, 7 - laser water pump, 8 – 
atomizer water pump, 9 - Fabry-Perot interferometer, 10 - He-Ne laser, 11 - atomizer, 12 - 
atomizer gas supply, 13 - atomizer power supply, 14 - atomizer control unit, 15 - attenuator, 16 - 
beam splitter, 17 -photodiode, 18 - mirror, 19 - cylindrical lens, 20 - high-resolution 
spectrograph, 21 - CCD-camera, 22 - optical multichannel analyzer, 23 –PC. 

A graphite furnace, electrothermal atomizer was used in the intracavity laser 

spectrometer for atomization of cesium samples. The atomizer was located in the laser cavity 

between dye cell and output mirror. It has special wedge windows for preventing 

interferometric structure in dye laser spectrum. Spherical cavity mirrors were used for the 

same purpose as well as for collimating of dye laser radiation inside a cavity through a 

graphite furnace. Moreover wedge cavity mirrors were employed, but in this case it is 

desirable to adjust the inner diameters of the furnace and the dye cell. The graphite tube was 

28 mm long with a 6 mm inner diameter and 8 mm outer diameter. The atomizer has 20 - 

3070° C heating temperature interval and 64 heating steps with the step duration 1 - 799 s. 

Stock and standard solutions were prepared by using de-ionized triply distilled water 

in accordance with a conventional sample preparation procedure (Whiteside, 1988). 

Atomic absorption signals were measured at the cesium wavelength of λ = 455.531 

nm. The use of a 5 µs dye laser makes it possible to provide an effective length of absorbing 

layer of about 100 m for geometrical length of a graphite furnace of 28 mm. 
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Dye laser spectra with absorption lines were recorded with the help of a 0.001 nm 

resolution echelle spectrograph with an optical multichannel analyzer. The charge coupled 

device (CCD) array was used for detection of optical radiation. The grating (300 lines/mm) 

operating in high orders of the spectrum (6 - 25) with double dispersion was used as a 

dispersion element. The focal length of the objective was 1377 mm, the relative aperture was 

1:21. Processing of obtained data as well as controlling of spectrometer modules was 

performed by the personal computer (PC). 

5.4. Experimental data and its preparation 

5.4.1.  Absorption spectra 

The developed method of spectra analysis was tested on absorption spectra of cesium 

in water solutions. The Cs I resonant line at λ = 455.531 nm corresponding to the transition 6s 
2S1/2 - 7p 2P0

3/2 was used as analytical one. The typical raw absorption spectrum of the Cs 

455.531 nm line is presented in Fig. 5.2. 

 

Figure 5.2. Raw absorption spectrum of Cs (narrow gap) on top of the laser pulse spectrum 

The most commonly used function of element concentration definition in the 

intracavity laser spectroscopy is relative depth of dip ∆I/I0 (Fig. 5.3). In some works 

equivalent breadth of absorption ∆S/I0 was considered as a spectra parameter. Physical 

meaning of that parameter could be seen from the Fig. 5.3. These parameters are used in 

classical approaches to analyze absorption spectra. Such approaches were realized and the rate 

mean square errors (RMSE) of those methods come to approximately 10%. 

The main factors which make processing of spectrums difficult are: 
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1. Non-stable time and spectral shape of lasing pulse. This results in the change of the 

base line and its non-linearity. 

2. The presence of interference components in a spectrum. A base line has 

irreproducible structure, which is similar to a low-frequency noise. This interference spectral 

structure appears in the cavity of the laser and exerts multiplicative influence upon an 

absorption dip.  

3. A multiplicative high-frequency noise of a CCD detector.  

4. A noise appearing in detection system during a laser pulse. High power electrical 

discharge in flash lamps supply initiated errors in analog-digital converter. 

 

 

Figure 5.3. Parameters of absorption spectra: relative depth of the gap ∆I/I0 and area ∆S/I0 

5.4.2.  Preprocessing of experimental spectra 

The application of preprocessing procedures, aimed to diminish the influence of 

disturbing factors, is the first step in any processing procedure of real-world signals. 

Before analysis a spectrum should be cleared from glitches (sharp over fall noise) 

because it does not carry any information. To achieve this purpose a spectrum was looked for 

consecutive samples with highly different values (like δ-peaks). If such a sample was found, 

its value was changed to the mean of the nearest samples. 

The filtration of spectrums was realized in the following way. The Fourier transform 

of a spectrum was calculated. Its real and imaginary parts were multiplied by a window of the 

special shape (several functions were tried, and the best results were obtained with the help of 

Gaussian window). After that the inverse Fourier transform was applied. A result of such 

filtration is shown in the Fig. 5.4. 
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A B 

Figure 5.4. High frequency noise cancellation by Fourier filtration: (A) – initial spectrum, (B) – 
filtered spectrum. 

5.5. Neural network processing of absorption spectra 

5.5.1.  Application of ANN 

The main idea in application of ANN for analysis of absorption spectra is the 

following. The central and most informative part of the preprocessed (see Fig. 5.4 B) and 

normalized spectrum was used as inputs of neural network. The information is processed and 

the normalized assumed concentration of element was obtained from an output. 

The 3-layer feed-forward neural network (so called multilayer perceptron) was used 

for analysis of absorption spectra (Fig. 5.5). ANN was trained by gradient descent with 

momentum and adaptive learning rate backpropagation error method. 

 

 

Figure 5.5. Three-layer feed-forward neural network (MLP) for analysis of normalized 
spectrum. 
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There are several problems of such application of ANN. These problems and proposed 

solutions are listed below in sections 5.2 and 5.3. 

5.5.2. Avoiding of the lack of experimental training pairs 

ANN usually needs quite large representative training set to work in a proper way. 

Unfortunately it is very difficult to obtain enough training pairs from an experiment because 

of high time costs and material charges. To avoid this computer simulation of additional 

training pairs was used as follows. The spectra from primary training set are analyzed and 

approximated by deterministic and stochastic functions as it is shown in the Fig. 5.6. 

 

A B 

B D 

Figure 5.6. Separation of initial spectra to compounds for simulation (A) – initial spectrum, (B) 
– ideal laser spectrum with absorption peak, (C) – low frequency and (D) – high frequency 
noises. 
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Artificial spectra were created to form a new training set for ANN. This simulated 

training set was used for initial training of a neural network. It is obvious that the performance 

of ANN trained in such a way is quite rough. To make it more exact ANN is trained once 

more on experimental training set. This algorithm is shown in Fig. 5.7. The robustness of the 

algorithm to the overtraining problem was solved by checking the ANN efficiency on the 

control training set, as it was proposed in (Gedova et al., 2002).  

 

 

Figure 5.7. The algorithm of ANN training in the case of lack of experimental data. 

5.5.3.  Selection of optimal neuron number in hidden layers 

The problem of optimal neuron number selection is still unsolved in the theory of 

multilayer networks. That is why we use the following empirical scheme to obtain an 

estimation of optimal number of neurons. Let us denote the target function F as a mean error 

of operation of ANN on a test set. This F can be considered as a function of neuron number in 

hidden layers. Now the problem of finding optimal neuron number turns to the problem of 

two-parametrical minimization of function F. In the current work this minimization was 

carried out by two standard procedures: scanning of parameter space to obtaining initial 

estimation and then sharpening of solution by the method of local variations. It should be 

mentioned that each value of F was calculated as a mean of 10 (for estimation) or 20 (for 

accurate solution) experiment.  

The search of the optimal structure of a neural network was carried out. The network 

with 17 neurons in layer 1 and 4 neurons in layer 2 showed the best results. 

The proposed method of neural network spectra analysis was tested on spectra of Cs 

25µg/l water solutions. As a result of application of neural network RMSE of concentration 
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definition was reduced from 9.1% (regression approach) to 8.4 %. Moreover, the time of 

neural processing is much smaller, then by using of conventional methods of analysis. 

However, it should be mentioned, that the neural network should be retrained if a new 

element is to be analyzed, or if a new dye is used.  

5.6. Estimation of the measurement errors 

To accomplish the statistical analysis first of all it is necessary to find out a sort of 

distribution of measurement errors. After that, statistical characteristics of results are 

determined.  

The distribution of recognized concentration (Fig. 5.8) was built using histograms and 

polygons of distributions for definition the sort of errors.  

 

 

Figure 5.8. The histogram of recognized concentrations of Cs shows Gaussian behavior 

The data from 61 spectra were obtained on Cs solutions with the constant 

concentration of 25 µg/l. Beforehand two suppositions were made. The first is that function of 

errors distribution is smooth and that measured value itself is continuous. Moreover the claim 

of symmetry of the errors distribution could be made. This is concerned with the relative 

smallness of errors. Even if the transfer function of our measuring equipment is essentially 

non-linear, the changing of its steepness on the small length, corresponding to the errors 

value, cannot lead to noticeable skewness of the distribution. The following estimations of the 

measurement errors had been received (see Table 5.1). 

On the assumption of available estimations of k and κ, with the help of topographic 

classification of mathematical models of distribution, it is possible to assert that our 

distribution belongs either to exponential distributions or to triangle ones. 
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Table 5.1. Statistical parameters of measurements distributions for ANN method. 

Parameters Concentration 
Distribution center (mean) XC ± ∆ 0.9 (XC) 24.9 ± 0.53 

Standard deviation σ ± ∆ 0.9 (σ) 2.05 ± 0.27 
Kurtosis ε ± ∆ 0.9 (ε) 2.76 ± 0.75 

Antikurtosis κ ± ∆ 0.9 (κ) 0.60 ± 0.09 
Entropic coefficient k ± ∆ 0.9 (k) 2.02 ± 0.10 

5.7. Discussion 

From the review presented in the second part of this work it may be concluded that for 

last few years artificial neural networks were applied as analytical tool in chemistry and close 

areas. The motivation for it was the intention to achieve better features of the available 

analytical system. There are examples of successful application of this flexible and powerful 

tool in atomic (Apanasovich et al., 2001) and molecular (Gedova et al., 2002) spectroscopy as 

well as in electron microscopy (Wienke et al., 1995) and mass-spectrometry (Eghbaldar et al., 

1998).  

This study as far as we know is the first attempt to use ANN for analysis of absorption 

spectra obtained in a high resolution spectrometry. As a rule a very limited volume of 

experimental data is the main restriction for ANNs implementation in high resolution 

spectroscopy. 

Due to a novel approach the feed-forward ANN was successfully applied for 

absorption spectra processing and concentration extraction. The multilayer perceptron with 17 

neurons in the first layer and 4 neurons in the second layer proved to be a quite suitable tool 

for this application. The simulated spectra were used for initial training of the ANN. Finally 

the neural network was trained with real experimental data. In the frame of the discussed 

approach the main problem in practical ANN application was avoided. 

The approach discussed above is not limited by the area of high resolution 

spectroscopy and may be applied for different architectures of ANNs. We suppose that neural 

networks based on RBF (Apanasovich et al., 2001) may be widely used for the solving of 

similar problems along with multilayer perceptrons.  
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5.8. Conclusions 

The problems of data processing in high resolution laser spectroscopy were discussed. 

The structure of intracavity laser spectrometer was described. The absorption line of explored 

atoms was selected by tuning of the flash lamp pumped dye laser. 

The application of ANN results in decreasing of measurements error. The obtained 

relative standard deviation for definition of small concentrations of cesium in water solutions 

is decreased with respect to standard processing methods and equals to 8.4 %. The processing 

using ANN is robust and more accurate then the conventional methods. Furthermore it is less 

time consuming in comparison with regressive analysis and other conventional procedures.  
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SUMMARY 

Membrane proteins play an important role in almost all cell activities. However, the 

characterization of the structure of membrane proteins in lipid bilayers is still at the frontier of 

structural biology. While 30-40% of all proteins are situated at or in membranes, yet less than 

1% of the known protein structures are of membrane proteins. The complexity and delicacy of 

membrane-protein systems impedes the application of standard methods of protein study, 

such as X-ray crystallography and NMR. Furthermore, these techniques are mainly aimed at 

short-range structural information, and seem to be not very useful for the study of long-range 

interactions, for instance in the case of protein assemblies. These factors urge to find other 

biophysical approaches to study proteins incorporated into lipid bilayers. A successful 

alternative is Förster (or fluorescence) resonance energy transfer (FRET) spectroscopy in 

combination with site-directed labeling with fluorescent probes. This technique provides 

distance information within a range of 10-100 Å, which is sufficient to study the structure of 

membrane proteins and their complexes. The crucial point in the extraction of structural 

information from FRET data is an advanced and robust data analysis. This work is devoted to 

the development of such methods for analysis of fluorescence data, based on simulation 

modeling, global analysis and artificial neural networks. Especially the advances and 

problems of the simulation-based fitting (SBF) approach to fluorescence data analysis are 

considered. The methodologies of global analysis and SBF are applied to obtain information 

about the position, aggregation and structure of M13 major coat protein in DOPC:DOPG 

vesicles. The resulting physical parameters, that describe the embedment and orientation of 

the protein in the membrane, such as protein-protein aggregation, protein depth, tilt angle, and 

tilt direction, are in good accordance with previously reported values. Based on the FRET 

data, it was found that M13 major coat protein (having 50 amino acid residues) in its bilayer 

conformation could be described as a single α-helix between amino acid positions 10-46. 

Additional work was performed on the methodological aspects of improving the SBF data 

analysis technique. Here it is proposed to use an artificial neural network to speed up the 

parameter identification and to make the process of fitting less sensitive to noise. The main 

idea of this method is the substitution of a time-consuming simulation model by an artificial 

neural network, specifically a multi-layer perceptron. The method results in a speeding up of 

the simulation by about a factor of 104 for the developed FRET model. 
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SAMENVATTING 

Membraaneiwitten spelen een belangrijke rol is vrijwel alle activiteiten van een 

biologische cel. Echter, de bepaling van de structuur van membraaneiwitten in lipidebilagen is 

nog steeds een onontgonnen gebied van de structurele biologie. Terwijl 30-40% van alle 

eiwitten op of in het membraan zit, is slechts 1% van de bekende eiwitstructuren afkomstig 

van membraaneiwitten. De complexiteit en delicaatheid van de membraaneiwitsystemen 

belemmert de toepassing van standaardtechnieken voor eiwitonderzoek, zoals 

Röntgendiffractie en NMR. Bovendien zijn deze technieken gericht op de bepaling van 

structuurinformatie op korte afstanden, waardoor ze niet bijzonder geschikt zijn voor de 

bestudering van lange afstandsinteracties, bijvoorbeeld in het geval van eiwitaggregaten. Deze 

factoren nodigen uit om andere biofysische benaderingen te vinden voor de bestudering van 

eiwitten die in lipidebilagen zijn geïncorporeerd. Een succesvol alternatief is Förster (of: 

fluorescentie) resonantie-energieoverdracht (“fluorescence resonance energy transfer”, FRET) 

spectroscopie in combinatie met plaatsgerichte labeling met fluorescente kleurstofmoleculen. 

Deze techniek is in staat om afstandsinformatie te geven op een schaal van 10 tot 100 Å, wat 

voldoende is voor de bestudering van de structuur van membraaneiwitten en hun complexen. 

Van doorslaggevend belang voor het verkrijgen van structurele informatie uit de FRET-

meetgegevens is een geavanceerde en robuuste data-analyse. Het werk dat in dit proefschrift 

wordt beschreven, is gewijd aan de ontwikkeling van zulke methoden voor de analyse van 

fluorescentiemeetgegevens, gebaseerd op simulatiemodellering, globale analyse en 

kunstmatige neuronale netwerken. In het bijzonder wordt aandacht besteed aan de 

ontwikkeling en problemen van een methode die uitgaat van het zo goed mogelijk aanpassen 

van een simulatiemodel op fluorescentiemeetgegevens (“simulation-based fitting”, SBF). De 

methodologie van de globale analyse en SBF zijn toegepast om informatie te verkrijgen over 

de positie, aggregatie en structuur van het manteleiwit van de bacteriofaag M13 in 

membraanblaasjes gemaakt van de fosfolipiden DOPC en DOPG. De gevonden fysische 

parameters die de inbedding en oriëntatie van het eiwit in het membraan beschrijven, zoals de 

eiwitaggregatie, eiwitdiepte, tilthoek en tiltrichting, zijn in goede overeenstemming met 

eerder gerapporteerde waarden. Uit de FRET-meetgegevens wordt geconcludeerd dat M13-

manteleiwit (dat bestaat uit 50 aminozuurresiduen) in de bilaagconformatie kan worden 

beschreven als een enkelvoudige α-helix die loopt van residu 10 tot 46. Aanvullend 

methodologisch onderzoek is uitgevoerd om de SBF-methode verder te verbeteren. In dit 

verband wordt voorgesteld om een kunstmatige neuronaal netwerk toe te passen om de 

bepaling van de parameters te versnellen en om het proces van de aanpassing van de 
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meetgegevens minder gevoelig te maken voor ruis. De kern van deze methode is om het 

tijdrovende simulatiemodel te vervangen door een kunstmatige neuronaal netwerk, in het 

bijzonder een meerlaags perceptron. De methode resulteert in een versnelling van de simulatie 

met een factor 104 voor het ontwikkelde FRET-model. 
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АБАГУЛЬНЕННЕ 

Мембранныя пратэіны выконваюць вельмі важную ролю практычна ва ўсіх 

клеткавых працэсах. Аднак, нягледзячы на важнасць даследвання мембранных 

пратэінаў, вызначэнне іх структуры з’яўляецца да гэтага часу вельмі складанай задачай. 

Складанасць і хрупкасць сістэмы пратэін-мембрана ў значнай ступені перашкоджваюць 

выкарыстоўванню такіх стандартных метадаў, як рэнтгенаўская крысталаграфія і ЯМР. 

Гэтыя фактары прымушаюць да пошукаў іншых падыходаў да вывучэння пратэінаў, 

што знаходзяцца ў ліпідным біслоі. Альтэрнатыўнай методыкай, якая паспяхова 

выкарыстоўваецца зараз, з’яўляецца флюарысцэнтная спектраскапія рэзананснага 

пераносу энэргіі (РПЭ) ў звязку з сайт-спецыфічным укараненнем метак. Гэты метад 

дазваляе атрымліваць інфармацыю аб адлегласцях у дыапазоне 10-100 Å, што 

з’яўляецца дастатковым для вывучэння як саміх мембранных пратэінаў, так і іх 

комплексаў. Вельмі важным пры атрыманні структурнай інфармацыі з РПЭ 

экперымента з’яўляецца выкарыстанне эфектыўнага аналізу дадзеных. Мэта гэтай 

работы – выпрацоўка і апрабацыя метада аналізу дадзенных флюарысцэнтнай 

спектраскапіі РПЭ пры выкарысанні апарата імітацыйнага мадэлявання, глабальнага 

аналізу і штучных няйронных сетак. Асаблівая ўвага ў рабоце надаецца праблеме 

фітынгу дадзеных мадэллю – дадатковыя даследванні былі праведзены у напрамку 

развіцця мэтадалагічнага аспэкту гэтага падыхода. У рабоце прапанавана 

выкарыстоўваць штучную няйронную сетку для паскарэння ідэнтыфікацыі параметраў 

пры фітынге і паніжэння ўплыву стахастычных фактараў. Асноўная ідэя метада – 

замена рэсурсаёмістай імітацыоннай мадэлі на спецыяльна навучанную няйронную 

сетку. У якасці няйроннай сеткі было прапанавана скарыстаць шматслаёвы персэптрон, 

які з’яўляецца ўніверсальным апраксіматарам. У выпадку разглядаемай у рабоце мадэлі 

пераноса энэргіі, паскарэнне мадэлявання пры замене складае прыкладна 104 разоў. 

Метадалогія глабальнага аналізу і фітынг мадэллю былі выкарыстаны для атрымання 

інфармацыі пра павоздіны базавага абалонкавага пратэіну бактэрыафага М13 у 

ліпідных везікулах. Знойдзеныя параметры, такія як: агрэгаванасць, глыбіня, вугал і 

напрамак нахілу, што апісваюць паводзіны пратэіна ў мембране, добра стасуюцца з 

раней апублікаванымі дадзенымі. Глабальны аналіз дадзеных РПЭ эксперыментаў 

выявіў, што пратэін бактэрыафага М13 (які мае 50 амінакіслотных рэштак) у сваёй 

мембраннай канфармацыі можа быць апісаны адной α-скруткай паміж пазіцыямі 10-46. 
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РЕЗЮМЕ 

Мембранные протеины играют исключительно важную роль в подавляющем 

большинстве клеточных процессах. Однако, несмотря на чрезвычайную значимость 

исследования мембранных протеинов, определение их структуры является очень 

сложной и до сих пор далекой от своего разрешения задачей. Сложность и хрупкость 

системы протеин-мембрана в значительной степени затрудняют применение таких 

стандартных методов определения структуры, как рентгеновская кристаллография и 

ЯМР. В этой ситуации необходимо искать другие подходы к изучению протеинов 

встроенных в липидный бислой. Успешно применяемой альтернативой является 

флуоресцентная спектроскопия резонансного переноса энергии (РПЭ) в комбинации с 

сайт-специфическим внедрением меток. Ключевым моментом при получении 

структурной информации из РПЭ эксперимента является применение эффективных 

процедур анализа данных. Целью данной работы является разработка и апробация 

метода анализа данных флуоресцентной спектроскопии РПЭ, основанного на 

использовании аппарата имитационного моделирования, глобального анализа и 

искусственных нейронных сетей. Особое внимание в работе уделено проблеме анализа  

данных с помощью имитационного моделирования, в частности были проведены 

исследования с целью развития методологического аспекта приближения с 

использованием имитационной модели. В работе предложено применять 

искусственную нейронную сеть для ускорения идентификации параметров и снижения 

влияние стохастических факторов. Основная идея метода заключается в замене 

ресурсоемкой имитационной модели специально обученной нейронной сетью. В 

качестве нейронной сети предложено использовать многослойный персептрон, 

являющийся универсальным аппроксиматором. В случае рассматриваемой в работе 

модели переноса энергии, ускорение при такой замене составило порядка 104 раз. 

Методология глобального анализа и имитационного моделирования были применены 

для получения информации о поведении основного оболочечного протеина 

бактериофага М13 в липидных везикулах. Найдены параметры, описывающие его 

положение в мембране: аггрегированость, глубина, угол и направление наклона. 

Полученные результаты находятся в хорошем соответствии с ранее опубликованными 

данными. На основании глобального анализа данных РПЭ экспериментов было 

выяснено, что оболочечный протеин бактериофага M13 (имеет 50 аминокислотных 

остатков) в своей мембранной конформации может быть описан одной α-спиралью 

между позициями 10-46. 
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