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Simulation-based fitting has been applied to data analysis and parameter determination of complex
experimental systems in many areas of chemistry and biophysics. However, this method is limited because
of the time costs of the calculations. In this paper it is proposed to approximate and substitute a simulation
model by an artificial neural network during the fitting procedure. Such a substitution significantly speeds
up the parameter determination. This approach is tested on a model of fluorescence resonance energy transfer
(FRET) within a system of site-directed fluorescence labeled M13 major coat protein mutants incorporated
into a lipid bilayer. It is demonstrated that in our case the application of a trained artificial neural network
for the substitution of the simulation model results in a significant gain in computing time by a factor of 5
× 104. Moreover, an artificial neural network produces a smooth approximation of the noisy results of a
stochastic simulation.

1. INTRODUCTION

Simulation-based fitting (SBF) has recently become a
standard tool for the analysis of experimental data to extract
the real parameters of, for example, chemical1 and biophysi-
cal systems.2-5 The idea of SBF is the approximation of
experimental data by synthetic data obtained via simulation
modeling. In comparison to standard analytical data fitting
techniques, SBF has the advantage that it fits natural physical
and chemical parameters of the system itself and gives direct
insight into how they affect the experimental characteristics
of the system.2

However in practice SBF has several limitations. The most
crucial problem is that simulation modeling usually is a very
time-consuming operation, which results in a long fitting
time. In some cases this approach is not useful at all, because
the time of optimization becomes nonrealistic (from months
to years). The origin of another weak point often lies in the
stochastic nature of both simulation and experimental data.
This results in a very complex behavior of the discrepancy
function and the introduction of a large number of local
minima.6

The aim of our study is to develop and present solutions
for these problems. Here we propose to use an artificial
neural network7,8 (ANN) to speed up the parameter identi-
fication and to make the process of fitting less stochastic.
The main idea of the method is the substitution of a
simulation model by an ANN (specifically a multilayer
perceptron7,8 ) during fitting. Because of the simplicity of
the multilayer perceptron structure and the internal math-

ematics, the computation time needed for the calculation of
neural network outputs is much less than for simulation
modeling. Hence, the replacement of a simulation model by
a multilayer perceptron leads to a considerable speeding up
of all calculations.

The proposed approach of the neural network approxima-
tion was tested on a simulation model of resonance energy
transfer9 between fluorescent labels of bacteriophage M13
major coat proteins incorporated into a lipid bilayer.

2. THEORY

2.1. Principles of SBF.The SBF approach was developed
for the determination of physical and chemical parameters
of complex systems, which cannot be completely described
by analytical expressions. Let us consider the idea of SBF
on the following general example. A complex (physical or
chemical) systemΘ can be characterized by a vector of
parametersP ) (p1, p2, p3, ...). These parameters can be
regarded as input parameters of the systemΘ. After a number
of experimental studies on the systemΘ are carried out with
different input parameters, the vector of output valuesF can
be obtained. In this case, the system can be considered as
an operator performing the following operation:

Usually, some input parameters are known. Let us denote
themP0; for example, letP0 ) (p1, p2). Other parameters,
which should be extracted, are denoted asPX; supposePX )
(p3, p4, ...). The vector of input parameters therefore includes
a combination of known and unknown parametersP ) (p1,
p2, p3, ...) ) (P0, PX). The extraction ofPX is the aim of the
analysis.
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Let us assume that for systemΘ it is possible to build an
adequate simulation model, which performs operation (2)
with the same physical parametersP.

whereF* contains the simulated output values, which should
approximate the experimental ones.

The determination of the unknown parametersPX is carried
out in the form of SBF. The flow diagram of this method is
shown in Figure 1.

The following steps can be identified in SBF:
1. Output valuesF are obtained experimentally (see blocks

1-3).
2. An adequate model¥ of systemΘ, which performs

operation (2), is created (block 5).
3. An initial estimationPX* is made forPX (block 4).
4. An optimization algorithm, using a variation of param-

etersPX*, minimizes the discrepancy function|F* - F|
(blocks 6-8 and 5 again).

5. Finally, the fitted parametersPX*, which should estimate
the experimental parametersPX, are obtained (block 9).

As was mentioned before, the main problem of SBF is its
time expenses. We solve this problem by the application of
an ANN, which approximates and substitutes the simulation
model during SBF.

2.2. ANN Approximation. As was shown independently
by Cybenko10 and Hornik,11 continuous smooth functions can
be uniformly well approximated by linear combinations and
superpositions of sigmoid functions, i.e., by a multilayer
perceptron. This is the most common class of ANNs.8,10-13

Concerning the application of ANNs, three-layer perceptrons
have better learning abilities than two layered ones.8

Most relationships in chemistry and physics can be
represented by continuous functions (if they have a stochastic
natureslet us speak about their mean). This gives the
possibility of approximating the simulation model¥ by a
multilayer perceptron. Let us denote this approximating ANN
transform asΨ. It performs the operation

whereF** is the neural network approximation of the output
values of the system.

Hence, instead of the simulation model¥, the neural
network approximationΨ can be used during parameter
fitting. The suggested ANN approach to parameter deter-
mination is illustrated in Figure 2. In this case, the ANN
operates as a black-box model of systemΘ.

In this approach the following steps can be identified:
1. Output valuesF are obtained experimentally (see blocks

1-3).
2. An adequate model¥ of systemΘ, which performs

operation (2), is created (block 5).
3. A representative set of points{P} in the parametric

space is generated (block 10) and the corresponding simula-
tion values are calculated{F*}. This set forms the training
set{P, F*}. (block 11).

4. The ANN is trained (block 12).
5. An initial estimationPX* is made forPX (block 4).
6. An optimization algorithm, using a variation of param-

etersPX*, minimizes the discrepancy function|F** - F|
(blocks 6-8 and 13).

7. Finally, the fitted parametersPX* ≈ PX are obtained
(block 9).

3. COMPUTATIONAL METHODS

3.1. Optimal Selection of Parameters for the Training
Set.Being replaced by an approximating ANN, the simula-
tion model is used only for initial training of the ANN. The
step of the generation of the ANN training set now becomes
the most time-consuming part in the proposed scheme in
Figure 2, because to obtain each element of this set the
relatively slow simulation should be executed. Furthermore
it is of crucial importance for a good approximation to have
a representative training set. Therefore to increase the
efficiency of a training set, it is necessary to use an algorithm
to generate a representative set of parameter points (each
point corresponds to a single vector of parametersP
describing the system), which are maximally spread in the
multidimensional parameter space together with a minimal
number of points. Furthermore, to be most flexible, the
algorithm should make it possible to increase the number of
points without any penalties.

In the present work, the following scheme was developed
and applied for the selection of points. It is assumed that
each parameter is normalized to the range [0, 1].

Figure 1. Flow diagram of simulation-based fitting (see text).

¥ (P) ≡ ¥ (P0,PX) ) F* (2)

Ψ(P0,PX) ) F** (3)
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1. A set of “boundary” points was generated. For every
parameter three values were taken: minimal, maximal, and
mean. Then all their combinations where taken into account.

2. Main training set generation. Here points are chosen
by the following algorithm:

2.1. Letn be the dimensionality of the parametric space
and N the number of found points. The constanta ) 1 is
preset.

2.2. A point with random parametric coordinates is taken.
2.3. The distanced from the new point to all previously

generated points is calculated.
2.4. If the following condition is true

the point is accepted andN is increased by 1. Else, the
algorithm checks how many unsuccessful attempts were
made before, and if there was a sufficient number of such
attempts (in our experimentss1000), the value ofa is
decreased by 10%.

2.5. The stopping criterion is checked. If it is false, the
algorithm goes to step 2.2.

To illustrate the scheme, a space of two parameters was
taken (n ) 2). The resulting points in comparison with
randomly selected ones are shown in Figure 3. Obviously,
the application of the scheme allows a uniform infill of the
two-dimensional parameter space. The infill itself remains
random and can easily be continued. Furthermore, the
application of such an approach to the generation of points
gives the possibility to select the most distant points of the
control set during ANN training (see section 3.3) and allows
one to avoid the selection of points with equal “parametric
coordinates”. This is important for generalizing the ANN.

3.2. ANN Structure. In our research the optimal number
of neurons was estimated using the exhaustive search method.
In this method, the number of neurons in the first and second
hidden layers were optimized. For each number of neurons,
the ANN was trained for a fixed number of iterations and
the resulting training error was calculated. To obtain a
statistically valid value for the training error, the training
was repeated independently for several times. After all

Figure 2. Flow diagram of simulation-based fitting with artificial neural network approximation. The dotted box shows the extension of
the simulation-based fitting method (see Figure 1) by the artificial neural network fitting procedure.

Figure 3. Illustration of the principle of point selection in a two-dimensional parameter space. Uniformly distributed random points are
shown in a. Points obtained by the proposed algorithm are presented in b.

min(d) > a

xn{N + 1}
(4)
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possible combinations of neuron numbers within the region
of search, the one with the lowest training error was taken
as optimal. The optimal number of neurons found depends
on the complexity of the model. These numbers are given
in Table 2 (see section 5).

3.3. Training of the ANN. Upon training of the multilayer
perceptron two rather contradictory conditions should be
satisfied. From the one side the mismatch between desired
and obtained outputs should be decreased. From the other
side an ANN should not lose its generalization abilities.13

An excessively long training results in a sliding of the ANN
coefficients to a local minimum. This makes the approxima-
tion worse in points that do not belong to a training set. This
phenomenon is called overtraining.12,13 Therefore, a special
training strategy, based on the generation of an additional
small control set, was applied to deal with this problem. After
each epoch of training the performance of the ANN is
verified on this control set. The training is terminated if the
performance does not change or decreases for a certain
number of epochs.12 Numerical calculations were performed
to determine the optimal size of the control set. The training
set was separated into an actual training set and a control
set with the following ratios: 90-10%, 85-15%, 80-20%,
75-25%, and 70-30%. For the three-parametric model the
best performance was obtained for the 80-20% ratio, for
the four-parametric model this was 75-15%, and for the
five- and six-parametric model the ratio 90-10% gave the
best results. The application of the proposed method of
training set generation (section 3.1) allows a simple separa-
tion procedure: the last generated elements of the training
set should be taken for the control set.

In our calculations the ANN is trained by the back-
propagation error algorithm with the Levenberg-Marquardt
optimization technique.14

4. EXPERIMENTAL OBJECTS AND METHODS

The proposed approach of the neural network approxima-
tion, as shown in Figure 2, was tested on a simulation model
of fluorescence resonance energy transfer (FRET) between
fluorescent labels of bacteriophage M13 major coat protein
mutants incorporated into a lipid bilayer.

4.1. FRET. The idea of FRET spectroscopy is based on
a dipole-dipole radiationless energy transfer and was initially
developed by Fo¨rster15 and further enhanced by Stryer.16

Macromolecules studied (in our case, membrane proteins)
are labeled with fluorescent probes of two types: donors
and acceptors.9 The emission spectrum of the donor and the
absorption spectrum of the acceptor should overlap. Donors
are excited by an external light source, and some of them
transfer excitation energy to acceptors due to dipole-dipole
radiationless energy transfer. The probability of energy
transfer for an isolated donor-acceptor pair is

wherer is the distance between the donor and the acceptor
andR0 is the so-called Fo¨rster distance, which corresponds
to 50% energy-transfer probability via dipole-dipole interac-
tion.15 For a system containingNa acceptors, the expression
for the energy transfer becomes somewhat more complex:

The mean probability of energy transfer in the system,
containingNd donors andNa acceptors, is called the energy-
transfer efficiency and can be calculated as a mean value of
energy-transfer probabilities for all donors:

By observing the energy-transfer process, one can get
information about the relative location of donor and acceptor
labels.

4.2. Biophysical Protein-Lipid Model. The membrane-
bound major coat protein of M13 bacteriophage, which
infects E. coli, is an excellent model system to study
fundamental aspects of protein-lipid and protein-protein
interactions.17 This single membrane-spanning protein con-
sists of 50 amino acid residues and has mainly anR-helical
conformation. The protein has been extensively studied in
membrane model systems by biophysical techniques.17-20

For FRET studies, the natural amino acid residue tryp-
tophan of M13 major coat protein at position 26 was used
as a donor label. To introduce an acceptor label to the protein,
a number of mutants, containing unique cysteine residues at
specific positions, was produced. The cysteine residues were
specifically labeled with the fluorescent environmental probe
N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonic acid
(AEDANS).20 This fluorescent label was used as an acceptor.
Since the labeling efficiency with AEDANS is less than
100%, the entire protein-lipid system contains proteins of
two types: unlabeled proteinsswith the natural donorsand
labeled onesswith both donor and acceptor.

To study such a complex system the following simplified
spatial model was designed. The biological membrane is
approximated by a two-dimensional periodic structure with
hexagonal packing of the lipids in which the M13 coat
protein mutants are distributed (Figure 4a). The area occupied
by each membrane protein on the membrane surface is
assumed to be equal to that of two lipids. It is assumed that
the distance between two nearest molecules on the grid is
8.0 Å and the thickness of the lipid bilayer is 30 Å. The
R-helical M13 coat protein mutants are approximated by rods
with a constant location of the donor (D) and a variable
location of the acceptor (A) (see Figure 4b).

4.3. Simulation of Energy Transfer. The input param-
eters of the model are presented in Table 1. The ranges listed
in this table are selected such that they are physically valid
and cover all possible experimental situations.

In the experimental situation, parameters 1-3 and 6 are
known (some of them within a small experimental inac-
curacy); thus, they can be regarded asP0 in terms of the
parameter description in section 2. However, in general the
separation of the parameters in Table 1 intoP0 and PX

depends on the situation. For instance, for the three-
parametric model parameters 1 and 2 can be used asPX,

pET ) 1

1 + (r/R0)
6

(5)

pET )

∑
i)1

Na

(R0/ri)
6

1 + ∑
i)1

Na

(R0/ri)
6

(6)

E )
1

Nd
∑
j)1

Nd

(pET)j (7)
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and parameter 3, which is known precisely, asP0. It should
be mentioned that the three-parametric model was used only
for the validation of the methodology. For the four-parametric
model, the coefficient of protein association becomes the
subject of interest (PX), while parameters 1-3 are the known
parameters (P0).

The fluorescence intensity and energy-transfer efficiency
for the entire protein-lipid system are taken as output values
(F in terms of the description in section 2). Because of the
simulation nature of the model, the resulting output contains
stochastic errors. Therefore simulations are run several times
to reduce these errors. The flow diagram of the simulation
is shown in Figure 5.

The simulation is carried out in the following way:
1. The parameters of the system are set (block 1).
2. A spatial model of the membrane with embedded

proteins is created in accordance with the input parameters.

The coordinates and orientation of the proteins provide
information about the locations of donors and acceptors in
the system (block 2).

3. For each donor (denoted asiD), the distances to all
acceptor, are considered and the probability of energy transfer
(to any of them) is calculated using eq 6 (blocks 3-5).

4. The mean probability of energy transfer among all
donors results in the energy-transfer efficiency for the whole
system.

5. Steps 2-4 (and blocks 2-6 in the flow diagram) are
repeated for several times to decrease the effect of the
randomness of the protein distribution. In our calculations
we used an empirical value of 104/nD simulations, wherenD

is the number of donors.
Additional simulations using this model and experimental

FRET data will be published elsewhere (Nazarov et. al.,
manuscript in preparation).

5. RESULTS AND DISCUSSION

5.1. ANN Configuration. Before transferring the simula-
tion model to the ANN, the input parameters (Table 1) were
normalized to the range [0,1] by the simple linear minimax
method. Thus, input values 0 correspond to minimal possible
parameter values and 1 to the maximal ones.

The optimal number of neurons obtained experimentally
varied with the number of input parameters. These numbers
are presented in Table 2.

After the number of neurons in the ANN was determined,
it was trained as was described in section 3. To avoid
overtraining, after each 10 epochs the ANN was tested on a
control set. If the result of testing did not improve for 30
epochs, the training procedure was stopped. The resulting
mean relative square error on the training set varied up to
2%.

Figure 4. Model of a membrane (a) and a membrane protein (b) with fluorescent labels. The nonlabeled protein only contains a tryptophan.
The protein mutants have an acceptor label (AEDANS) at various positions along the protein structure. The protein is assumed to be
R-helical.

Table 1. Input Parameters of the Simulation Model

no. parameter description range

1 surface density of labeled proteins ratio of the area occupied by labeled proteins (containing the donor and acceptor)
to the area of the entire membrane

0.0001∠0.1

2 surface density of nonlabeled proteins ratio of the area occupied by nonlabeled proteins (containing only donor)
to the area of the entire membrane

0.0001∠0.1

3 labeling site amino acid residue number to which the acceptor is attached 1∠50
4 coefficient of protein association probability that a selected protein is located in the immediate proximity to another one 0∠1
5 size of molecules minimal distance between the centers of 2 nearest molecules (proteins and lipids) 5∠10 ×81
6 Förster distance donor-acceptor distance (for an isolated pair) corresponding to 50% energy transfer 1∠100×81

Figure 5. Flow diagram of a single simulation of energy transfer
in the protein-lipid system.
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5.2. Time Costs.All calculations in this article were made
in MATLAB 6.1 with the Neural Networks Toolbox on a
PC with Intel Pentium III-850 CPU. The time costs of the
ANN method application in this set up are shown in Table
3.

From Table 3, it is clear that the generation of training
sets is the most time-consuming operation. However, it
should be noted that this process does not need the supervi-
sion of a human and the training itself needs to be performed
only once for each simulation model. The gain in computing
time, which is about 5× 104, does not decrease significantly
with the increase of the network complexity.

A typical illustration of the ANN approximation of the
simulation model is shown in Figure 6. Here the energy-
transfer efficiency is plotted as a function of the location of
the acceptor. The oscillations in this plot arise from the
R-helical nature of the protein model, as is shown in Figure
4b. The relative deviation between the ANN approximation
and the actual model calculation is less than 3%, showing
that the ANN approximation performs very well.

5.3. Consistency of the Approximation. To obtain
information about the consistency of the ANN approxima-
tion, we conducted several statistical calculations on the four-
parametrical model. In these calculations we modified one
of the model parameterssthe association coefficientsand
analyzed the deviation between the ANN approximation and
the simulation modeling. In Figure 7a the energy-transfer
efficiency is plotted for various values of the protein
association constant. The agreement between the ANN
approximation and actual model calculation is good.

Since the autocorrelation function, calculated from the
deviations (Figure 7a), is close to aδ function, we conclude
that the deviations are not correlated and behave stochasti-
cally. The distribution of the deviations (Figure 7d) is close
to a Gaussian line shape, indicating that the deviations are
the result of the randomness of the simulation model.

Table 2. Optimal Number of Neurons in the ANN Useda

no. of input values 3 4 5 6
model params 1-3 1-4 1-5 1-6
no. of neurons in the first layer 13 15 18 20
no. of neurons in the second layer 10 13 16 20

a The input parameters are described in Table 1.

Table 3. Time Costs of the ANN Approximation of the FRET
Simulation Model

no. of params 3 4 5 6
time for generation of

the training set (h)
11 22 56 110

time for training (min) 6 10 14 20
time for ANN

simulation (s)
6.0× 10-4 7.0× 10-4 8.0× 10-4 10-3

av time for simulation
modeling (s)

40 40 40 40

av gain in computer
time

6.7× 104 5.7× 104 5.0× 104 4.0× 104

Figure 6. ANN approximation of the simulation model (a) and
relative deviations of the ANN result and the simulation model
(b). In a, the circles show the result of the simulation modeling
and the line is the ANN approximation.

Figure 7. Consistency of the ANN approximation. In a, the thick
gray line is the result of the simulation modeling and the thin black
line is the ANN approximation. Below this graph the relative
deviations between simulation model and approximation (b) and
their autocorrelation function (c) are given. The distribution of
deviations is given in d.
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It should be mentioned that a multilayer perceptron with
sigmoid activating functions produces a smooth approxima-
tion of a stochastic simulation model. This approximation
does not contain stochastic noise. Thus, the fitting procedure
operates with a less stochastic discrepancy function|F -
F** | and therefore contains less local minima than in the
case of stochastic simulation model fitting.

6. CONCLUSIONS

The use of a trained ANN in the biophysical modeling
presented here results in a gain in computing time by a factor
of 5 × 104. Moreover an ANN produces a smooth ap-
proximation of the results of a stochastic simulation. Thus,
it decreases the level of stochastic errors. Due to this smooth
dependency it will simplify the application of standard
optimization techniques, such as gradient search, for param-
eter determination. It was shown that the deviations between
the actual model outputs and its ANN approximation have
a stochastic nature. In our case the relative deviation was
less than 3%.

The approach used in our calculations has some imperfec-
tions. It works only when the number of variable parameters
is relatively small (in our calculations up to 6). Furthermore
the calculations related to the generation of the training set
are quite time extensive, although they need to be performed
only once for a simulation model.

In conclusion, the method of ANN modeling is an
excellent tool for determination of parameters of specific
systems. In fact the method can be generalized to analyze
any experimental system for which SBF can be applied.
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