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Abstract. The method of the direct application of an artificial neural network for modelling
of a complex system is developed with the purpose of speeding up the optimisation
procedure for determination of system parameters. The method provides a significant
decrease in simulation time. Moreover the artificial neural network produces a smooth
approximation of stochastic simulation results and consequently it reduces the level of
stochastic errors. The developed algorithm is applied to model the fluorescence resonance
energy transfer within a system of M13 major coat protein mutants embedded in a
membrane.

1. Introduction

Computer modelling has become a standard method for the parameter
determination and study of complex systems and processes. Especially in systems
that cannot be described by a set of analytical equations Monte Carlo simulation
provides a general approach to such a problem. However, computer simulation has
several weak points. One of them is the high time cost of its realisation, which
makes it difficult to use an optimisation technique for the determination of model
parameters. At the same time, it is known that it is possible to approximate any
existing smooth function using an artificial neural network (ANN) with a
sufficient number of layers and neurons [3, 5, 1].

In this paper we propose to apply an ANN to reproduce a simulation model. This
makes it possible to use the ANN to fit the model parameters to an experimental
data set, and to strongly speed up the fitting procedure. Here we demonstrate the
application of this idea to the simulation model of energy transfer processes
between fluorophores in a membrane protein system.

2. Theory

Let us consider the following problem. A system ® has a set of input parameters
P, and a set of output values F. Some input parameters are known (Py) and others



should be defined (Py), so that P=[P,, Py]. In this case, the system described
performs the following operation:

O(P,,P,)=F. (1)
Usually the determination of the unknown parameters Py is carried out in the
following way:

1. A set of F'is obtained experimentally.

2. A model E of system O is created. It performs the operation:

E(P,,Py)=F* )
3. An initial estimation is made for Py.
4. An optimisation algorithm, using a variation of parameters Py, is executed to

minimize the error ||F*-F||.
This very general algorithm is represented in Fig.1.
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Fig.1. Methodology of parameter determination

The most crucial problem of this scheme is the time-consuming operation (2). In
some cases this approach is not useful at all, because the time of optimisation
becomes non-realistic. To significantly speed up the algorithm, we propose the
application of an ANN that replaces model (2).

Continuous functions can be uniformly well approximated by linear combinations
of sigmoidal functions, as was independently shown by Cybenko [3], and Hornik,
Stinchcombe, and White [5]. The error in the approximation of functions by an
ANN is bounded [1]. For our case this means that it is possible to replace the
operation (2) by a neural network transform

Y(P,,P,)=F*. (3)
The computation time needed for transform (3) is much less than for operation (2).
The suggested neural network approach to modelling is illustrated in Fig. 2. In this
scheme the generation of a representative training set is the most time-consuming
procedure. To be sure the training set is representative we used the following
algorithm.

Two subsets of training pairs are taken: a deterministic and a stochastic one.



Step 1. The generation of a "boundary" parameters set. For each parameter 3
values are taken: minimal, average and maximal. Then all possible combinations
of these values are generated which provides the first training subset. For example,
for a system with 4 input parameters this gives 3*=81 training pairs in this subset.
Step 2. The generation of a primary training subset. In this step input parameters
are randomly selected within a certain range. In our numerical experiments we
take up to 5000 of training pairs.

Step 3. The determination of similar training pairs. Due to the random selection of
parameters, some training vectors can be close to each other. Their use for training
does not lead to an increase of precision, only to an increase of training time.

JP—
Model
B(P)

Training

ANN
¥

Fitting
algorithm

Inputs

— Qutputs

A

Found P,

Fig.2. The direct application of an ANN to modelling

The method described is used for the simulation of dipole-dipole energy transfer
processes between membrane proteins.

3. Model Description

The fluorescence resonance energy transfer (FRET) method has been applied to
several problems in biology as a means of estimating intra- and intermolecular
distances in macromolecular systems. Especially it has been used for the
determination of the conformation and association of proteins embedded into a
phospholipid bilayer. [6] The idea of FRET spectroscopy consists of labelling
macromolecules with fluorescent probes of two types: donors with a relatively
long lifetime of the excited state and acceptors with a short lifetime. The emission
spectrum of the donor and the absorption spectrum of the acceptor should overlap.
The donors are excited by a light source and some of them transfer excitation
energy to the acceptors. From the resulting emission spectra, it is possible to
define an efficiency of the energy transfer processes using Foster's theory [4]. The
experimental system consists of mixed lipid vesicles of dioleoyl
phosphatidylcholine (DOPC) and dioleoyl phosphatidylglycerol (DOPG) with
inserted major coat proteins of the M 13 bacteriophage [7]. In this system there are
two types of proteins — wild, containing only one tryptophane amino acid (donor)
and mutant proteins, containing both tryptophane and AEDANS (acceptor).



Because of its complexity in these reconstituted protein-lipid systems, the problem
of determining the association and conformation of the M13 coat protein cannot
be solved analytically. All analytical solutions that are known today have very
serious simplifications and limitations. Therefore we used a simulation model. In
this model a biological membrane is approximated by a two-dimensional periodic
structure with a hexagonal packing of the lipids in which proteins are randomly
distributed (Fig. 3 a). The area occupied by each protein on the membrane surface
is assumed to be equal to that of a lipid. The distance between two nearest
molecules on the grid is 5.6 A and the thickness of the lipid bilayer is 30 A. M13
coat protein mutants are approximated by hexagonally situated rods with a
constant location of the donor (D) and variable location of the acceptor (A)
(Fig. 3 b).
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Fig 3. Model of a membrane (a) and membrane proteins (b) with fluorescent labels

The input parameters of the model are:

1) Concentrations of wild-type proteins and mutants.

2) Location of the acceptor in the protein.

3) Coefficient of protein-protein association (the probability that a selected
protein is located in immediate proximity to another one).

4) Foster distance (the photophysical parameter, which describes the intensity of
energy transfer [4]).

The intensity of fluorescence and energy transfer efficiency are taken as output
values. Because of the simulation nature of the model, the resulting output
contains stochastic errors. Therefore simulations are run several times to reduce
these errors. This results in an increase of calculation time. In our numerical
experiments one complete calculation takes up to 2 min.

4. Results

A three-layer perceptron is used to reproduce the described simulation model.
Some statistic experiments are conducted to define the optimal number of neurons
in hidden layers. This number depends on the number of wvariable input



parameters. So, for 3 variable parameters the ANN should have 10-12 neurons in
hidden layers, for 4 parameters 14 and for 5 parameters — 16. These values were
experimentally obtained. In our case the application of a larger number of neurons
does not lead to a decrease of the error for a test set.

The ANN is trained by the Back Propagation Error algorithm with the Levenberg-
Marquardt optimisation technique [2]. To avoid overtraining after each 10 epochs,
the ANN is tested on a set of control input-output pairs (200 elements). If the
results of testing did not improve for a certain time, the training procedure is
stopped. All calculations were made in MATLAB® 6.1 with the Neural Networks
Toolbox on a PC with Intel Pentium III-850 CPU. The time costs of the ANN
method application are shown in Table 1.

Table 1. The time costs of the ANN method

Task 3 variable parameters 4 variable parameters
Training subset 1 generation 30 min 90 min
Training subset 2 generation 12 hr 22 hr
Training 6 min 12 min
ANN simulation 510" s 810" s

The average time of the calculation conducted by the simulation model is 48 sec.
To obtain the same result by the ANN calculation it takes about 6-107 s,
depending on the number of neurons in the hidden layers. This means that the
calculation is speeded up by approximately a factor of 10°.

After execution of the training procedure the mean relative square error on the
training set varied from 0.8 to 1.2% depending on the task. The resulting errors on
the test input-output set varied from 0.9 to 1.5%. To prove the quality of the
method used, comparison were made using the simulation model and the ANN.
One result is represented in Fig 4, which shows an excellent agreement.
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Fig. 4. The dependence of the energy transfer intensity on the location of the acceptor label
(assuming no protein aggregation). The circles show the computer-simulated values, and
the line shows the neural network approximation




Fig. 4 shows that an ANN is able to build a smooth interpolation of the
dependences of fluorescence intensity from input parameters of the model. Due to
high speed of the ANN calculation it is possible to obtain smooth dependences.
These dependences are quite complex and so they hardly can be described by a
single analytical function with physically meaningful parameters. Moreover an
ANN approximation of a model allows calculating numerical values of derivatives
and hence it allows using a gradient fitting technique.

5. Conclusions

The use of a trained ANN in the modelling presented here results in a gain in
computing time by a factor of 10°. This allows using optimisation technique to
determine parameters of the system considered. Moreover the ANN produces a
smooth approximation of the results of a stochastic simulation. Thus it decreases
the level of stochastic errors. Due to this smooth dependency it is possible to use a
standard optimisation technique, such as gradient search, for parameter
determination.

The imperfections of described algorithm are the following. It works only when
the number of variable parameters is quite small (in our experiments — up to 5).
Furthermore ANN approximation of a system may contain some inaccuracies.

Nevertheless, the method of ANN modelling can be used as a very good tool for
determination of initial estimations of parameters. It is not limited to biophysical
problems, and can be applied to any situation where the scheme from Fig.1 can be
used.
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