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Abbreviations 

14:1 PC 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine 
22:1 PC 1,2-dierucoyl-sn-glycero-3-phosphocholine 
Chl chlorophyll 
CP29 chlorophyll-a/b-binding protein 29 
DM n-Dodecyl β-D-maltoside 
DOPC/DOPG dioleoylphosphatidylcholine/ dioleoylphosphatidyl-glycerol 
ESR (EPR) electron spin (paramagnetic) resonance 
FRET Förster (or fluorescence) resonance energy transfer 
GA genetic algorithm 
GHOST condensation algorithm that filters and groups multiple solutions 

found during optimization of the simulated spectra 
HEO hybrid evolutionary optimization 
LDS lithium dodecyl sulfate 
Lhc light-harvesting complex 
LHCII light-harvesting chlorophyll-a/b-binding protein of photosystem II 
MD molecular dynamics 
MTS-SL (1-Oxyl-2,2,5,5-tetrame-thylpyrroline-3-methyl) 

methanethiosulfonate spin label 
NMR nuclear magnetic resonance 
PC phosphatidylcholine 
PS photosystem 
RGB red green blue color model 
SDSL site-directed spin-labeling 
SGA simple genetic algorithm 
SL spin label 
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Introduction 

Proteins are the key molecules in cells of living organisms, including human beings. They 
participate for instance in signaling pathways, intracellular and extracellular transport, 
mechanical work, and can act as sensors. Biochemistry, and particularly the knowledge 
about protein structure and function, provides important insights and practical applications 
in medicine, agriculture, nutrition, and industry 1. Our special interest in this thesis concerns 
the study of structural characteristics of membrane proteins and intrinsically disordered 
proteins, which have been characterized far less well than water-soluble proteins. 

We describe a new modeling approach for membrane protein structure 
characterization based on a) structural constraints experimentally determined by site-
directed labeling; b) conformational space modeling; c) protein structure optimization. The 
first chapter is a general introduction to the structural organization of proteins, in particular 
membrane proteins, and to the techniques, which have been used to study these protein 
systems. Later on in the thesis the focus will be on site-directed spin labeling (SDSL) 
electron spin resonance (ESR) spectroscopy, an alternative and complementary technique 
with respect to well-established and powerful techniques like X-ray crystallography and 
nuclear magnetic resonance (NMR) spectroscopy.  

First, in section 1.1 some background information is presented about proteins and 
biological membranes. Section 1.2 describes different experimental techniques used for 
protein structure determination. In section 1.3 the protein structure modeling is overviewed. 
The next two sections describe the two membrane proteins: bacteriophage M13 coat protein 
(section 1.4), and light-harvesting protein complex CP29 (section 1.5), which are studied in 
detail in this thesis. Finally, section 1.6 introduces the overview of the thesis. 

1.1 Protein: life's workhorse 

Interestingly, the whole wealth and diversity of proteins and protein functions (i.e., 
regulation, signaling, transport, catalysis, etc.) primarily stems from a combination of 
20 basic amino acids, sequentially linked one to another. Due to particular combinations of 
amino acids, a specific environment, and interactions with many other molecules, the 
primary protein sequence leads to the formation of a 3D structure. The structural 
organization and the corresponding dynamical properties together define the functionality 
of the proteins. 

1.1.1 Protein structure and dynamics 

Already the primary sequence of the protein mainly defines its 3D structure. The 
organization of the amino acid chain into a particular pattern (examples of helices, sheets, 
and turns are presented in Figure 1C) is referred to as the secondary structure. The 
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secondary structure folds into the three-dimensional one, which is called the tertiary 
structure. Finally, if several folded proteins are organized into a functional protein complex, 
one speaks of the quarterly structure (see Figure 1A). 

 
Figure 1. Protein structure. A. Levels of structure in proteins 1. The primary structure consists of a 
sequence of amino acids linked together by peptide bonds. The resulting polypeptide can be coiled 
into units of secondary structure, such as an α-helix. The helix is a part of the tertiary structure of the 
folded polypeptide, which itself can be one of the subunits that make up the quaternary structure of a 
multisubunit protein, in this case hemoglobin. B. Parameterization of the secondary structure of a 
protein: the distribution of ϕ and ψ backbone dihedral angles is given in the schematic 
Ramachandran plot 2 and defines the secondary structure. Black areas indicate the allowed 
combinations of ϕ and ψ dihedral angles. Values of ϕ and ψ corresponding to the secondary 
structure motifs, α-helix and β-sheet, are marked with orange lines. C. An example protein structure, 
an acid-binding protein, rich in β-sheets, also having two short α-helices and several turns (loops) 3. 

In proteins, the amino acids are covalently linked in linear peptide chains, via 
peptide bonds, in which the carboxyl group of one amino acid is joined with the amino 
group of another amino acid. The peptide unit is rigid and planar; however, the bonds at the 
end of the peptide unit are free to rotate. This allows polypeptide chains to form a wide 
range of three-dimensional protein structures 4. The bond angles arising from rotations at 
the Cα atom are identified as ϕ and ψ rotations. Allowed values for these angles are 
graphically represented on a Ramachandran plot 2,5, which also identifies regions of 
different motifs of the secondary structure, e.g. α-helix and β-sheets (see Figure 1B). The 
backbone of the protein (the regular repeating main chain) formed out of amino acid bases 
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is more rigid than the protein side chain, which is made of amino acid residues. Due to 
single bonds free rotation within the side chain, each amino acid is described by a set of 
possible side chain rotamers 6,7. 

Interestingly, forces that control secondary, tertiary and quarterly structure are much 
weaker than the ones that constitute a covalent bond. Secondary structure motifs, α-helix 
and β-sheet, are entirely governed by hydrogen bonding. A notable exception concerns 
transmembrane proteins, in which the secondary structure is strongly stabilized by 
hydrophobic interactions due to membrane lipids. Hydrogen bonding, hydrophobic forces, 
electrostatic forces and van der Waals forces, in combination with steric hindrance effects, 
together govern protein folding and stabilize tertiary and quarterly structures. 

Although static structures are known for many proteins, the functions of proteins are 
often governed by their dynamics 8. Protein dynamics is characterized by the timescale, the 
amplitude and the direction of the fluctuations 9. 

1.1.2 Biological membrane and membrane proteins 

Biological membranes form boundaries between different compartments. Membranes are 
composed of lipids and protein molecules that form a thin hydrophobic barrier. 
Carbohydrates are also present as part of glycoproteins and glycolipids. Transport proteins 
in the plasma membrane allow the passage of certain ions and molecules; receptor proteins 
transmit signals into the cell; and membrane enzymes participate in some reaction 
pathways. Because the individual lipids and proteins of the plasma membrane are not 
covalently linked, the entire structure is remarkably flexible, allowing changes in the shape 
and size of the cell 1. 

The complex structure of a biological membrane can be described with a fluid 
mosaic model of Singer and Nicholson 10,11. The acyl chains in the interior of the membrane 
form a fluid, hydrophobic region. Integral proteins float in this sea of lipids (see 
Figure 2A). Both proteins and lipids are free to move laterally (the speed depends strongly 
on size of protein, packing and temperature) in the plane of the bilayer, but movement from 
one face of the bilayer to the other is restricted. 

Subsequent refinements of the fluid mosaic model were suggested, based on the 
results of experimental and theoretical studies focusing on some specific aspects of the 
membrane structure 12. For example, Israelachvili 13 proposed that proteins and lipids need 
to ‘adjust’ to each other (a concept of ‘hydrophobic matching’ 14-16, see Figure 2D). It was 
suggested that small proteins consisting of one or a few α-helical chains are likely to 
accommodate to the bilayer thickness by helix tilting, whereas larger proteins or less 
flexible proteins induce changes in bilayer thickness. A more advanced picture of the fluid 
mosaic model which is still under discussion contains patches of lipids, the composition of 
which differs from the average for the bilayer 11. 
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Figure 2. Biological membrane and membrane proteins. A. The Fluid-Mosaic-Model of the cell 
membrane 17. B. Lipid motions in biomembranes and their approximate correlation times 18. C. 
Diversity in membrane proteins (transmembrane and peripheral; α helical and β barrel) in the lipid 
bilayer. D. Modified view of the structure of a biological membrane. Because component lipids and 
proteins are not naturally matched in this membrane, they must strain (expend energy) to match each 
other hydrophobically, resulting in a high-energy membrane. Compensatory conformational changes 
include lipid acyl chain extension and transmembrane helix tilting when lipids surround a protein 
with a long transmembrane region, and lipid acyl chain compression when lipids surround a protein 
with a short transmembrane domain. 

Not only do integral proteins perturb the lipids, but the physical state of the lipids 
does also actively influence protein function 19. According to the shell model 20 the lipids 
form a shell (annulus) around the protein. Annular lipids are envisioned to be stably 
associated with proteins, though component lipids can exchange with the ‘bulk’ bilayer 
lipids 21. ESR 22-24, NMR 18 and optical spectroscopy have been used to studying annular 
lipids and protein-lipid interactions. 

New models view the membrane as a complex, highly cooperative and 
heterogeneous system, which displays dynamic and structural properties on many length- 
and time scales 12. It is also clear that there are strong interactions between lipids and 
proteins in the membrane 17. 
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Membrane proteins. Membrane proteins constitute by weight up to 80% of the biological 
membranes. Their common property is that part of their structure is buried in a lipid 
bilayer 25. The position of membrane proteins in the membrane depends on the polarity of 
the amino acid residues. Membrane proteins can pass through a membrane (integral or 
transmembrane proteins), or lie on top of a bilayer (peripheral or surface membrane 
proteins) (see Figure 2C). The most simple transmembrane proteins (e.g., the major coat 
protein of M13 introduced in section 1.4) consist of a single chain (usually α-helical), 
which spans the membrane. Larger proteins (e.g., protein complex CP29 described in 
section 1.5) consist of multiple segments. These are usually the chains of α-helices or 
strands of β-barrels connected with the loops (Figure 2C). 

The topology of an integral membrane protein can be predicted from its amino acid 
sequence 26,27. A sequence of more than 20 hydrophobic amino acids indicates that this part 
of a protein traverses the lipid bilayer. A protein chain surrounded by lipid molecules 
without water molecules with which they could make hydrogen bonds, will tend to form α-
helices and β-sheets, in which intrachain hydrogen bonding is maximized. If the side chains 
of all amino acids in a helix are nonpolar, hydrophobic interactions with the surrounding 
lipids further stabilize the helix 1. Polar amino acids (lysine, arginine, glutamic acid, and 
aspartic acid) are found exclusively in the aqueous phases. The side chains of tyrosine and 
tryptophan are often present in the interface between lipids and water 28, able to interact 
both with lipids and water, and serving as membrane interface anchors. 

 
Effect of lipids on protein structure. Protein-lipid interactions are expected to play a 
prominent role in the membrane structure 29. Not only do integral proteins perturb the 
lipids, but the physical state of the lipids does also actively influence protein function 19. 
Membranes are very dynamic structures with constant movements of lipids in the bilayer, 
both in the transverse direction across the bilayer and the lateral direction in the plane of 
this two-dimensional matrix (see Figure 2B). The movements in the lateral direction give 
rise to the fluid nature of the membrane and enable interactions among proteins and 
between proteins and lipids 30. It is thought that lipid dynamics profoundly influence the 
function of membrane proteins, not the least in dynamically differentiated and spatially 
separated in-plane membrane domains 23. On the other hand, there is evidence for 
stabilizing lipid-protein interactions: several hydrogen bonds and/or ion–pair interactions 
stabilize head group binding, whereas hydrophobic lipid side chains fit tightly into 
hydrophobic grooves at the protein surface and are stabilized by multiple nonpolar, van der 
Waals interactions with amino acid residues 31. 
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1.2 Protein structure characterization 

Around 90% of the protein structures available in the Protein Data Bank 32,33 has been 
determined by X-ray crystallography (see Table 1). This method allows the exact 3D 
coordinates of all the atoms in the protein to be determined to within a certain resolution. 
Roughly 9% of the known protein structures have been obtained by NMR techniques. 
Alternatively electron microscopy (EM), atomic force microscopy (AFM) can also be used 
to determine lower-resolution 3D structures 34-37. Certain aspects of the secondary structure 
as a whole can be determined via other biochemical techniques such as circular dichroism 
(CD) 38-40, small-angle X-ray scattering (SAXS) 41,42, fluorescence and ESR spectroscopy 43. 
Cryo-electron microscopy has recently become a means of determining protein structures at 
low resolution (less than 5Å) and is anticipated to increase in power as a tool for high 
resolution work in the next decade. In the past few years it has become possible for highly 
accurate physical molecular models to complement the in silico study of biological 
structures. These include various technologies of 3D Molecular Design and visualization, 
and Molecular Dynamics (MD) simulations, which are constantly being improved due to 
refinement of the models and due to continuous increase of the computational power 
allowing longer simulations or simulations of more complex systems. 

Table 1. Protein database current holdings 32,33. 

Techniques Proteins Nucleic acids Protein/NA 
complexes Other Total 

X-ray  46071 1142 2118 17 49348 
NMR  6844 850 144 7  7845 
Electron Microscopy  163 16  59  0  238 
Other  110  4  4  9  127 
Total  53188 2012 2325  33  57558  

1.2.1 SDSL-ESR spectroscopy 

Site-directed spin labeling electron spin resonance spectroscopy 44-46 is a relatively new 
biophysical characterization technique that might to some extent function as an alternative 
to powerful methods as X-ray crystallography and NMR spectroscopy. SDSL-ESR 
provides both local structural and dynamic information on proteins 47 and has been applied 
to membrane proteins 43. 

In SDSL-ESR a spin probe (nitroxide) is incorporated into the protein by attaching it 
to a cysteine side chain (see Figure 3). In the presence of paramagnetic species, e.g. a 
nitroxide, which contains an unpaired electron, ESR absorption is observed 25. 
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Figure 3. Site directed spin labeling ESR spectroscopy. Nitroxide spin label is attached to the 
cysteine (A), which replaces the original amino acid at the strategically chosen site (B). Anisotropy of 
the spin label side chain fast motion (C) is revealed by the line-shape of the ESR spectrum (D). 
Analysis of the ESR spectrum provides parameters, which describe the rate of the spin label dynamics 
and the conformational restrictions at a local protein site. In (C) small red points represent the single 
spin label conformations (rotamers). 

One of the principal applications of spin label ESR is to study the mobility of 
nitroxide-labeled molecules 48. The dynamics, which can be extracted from an ESR 
spectrum, occurs on a picosecond-nanosecond time-scale in physiological conditions 48,49. 
The sensitivity of the conventional spin label ESR spectra to molecular motion is 
determined by the transverse relaxation process (T2 process) 48 and it is limited by the 
spectral anisotropies of motions faster than ≈ 10-8 – 10-7 s 50. 

For a spin label bound to a protein, the potential surface that determines its motion, 
or the rotational conformational space, is very complex, involving interactions with the 
protein backbone, the adjacent side chains, and collisions with solvent molecules 51. Thus 
SDSL is a powerful tool to study the local structure in the proteins, monitor conformational 
changes in protein topology 45,47, and to determine backbone fluctuations at high 
temperature conditions 47,52,53. 

With respect to structure determination, dual-probe-SDSL 54 enables also distance 
measurements in biological molecules 55,56. Depending on the particular experimental 
method, distances from 0.4 to 8.0 nm can be accurately measured 57-59. The disadvantage of 
this method is that distance analysis by ESR can only be done at low temperature (200 K) 43 
although attempts have been made to estimate inter-residue distances at physiological 
temperatures 60. The information about this method can be found elsewhere 58,61-65. 
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1.2.2 Multi-component ESR spectra analysis 

To determine the picture of the actual heterogeneity within biomembranes and at specific 
sites of proteins, a special methodology should be applied including advanced spectral 
analysis and inverse-problem solving techniques 66. Such an analysis is based on 
mathematical modeling, spectrum fitting and parameters optimization 67,68. As a large 
amount of information evolves from such an approach a special method of solution 
condensation called GHOST was developed to facilitate the analysis and interpretation of 
the experimental data 67,68. It combines solution density filtering, χ2 goodness filtering, 
solution-space slicing, and group determination, leading to a graphical presentation of the 
spectral parameters (see Figure 4).  

Due to protein conformational variations, conformational transitions, and the 
complexity of protein dynamics on the time scales detectable by ESR spectroscopy the 
measured spectrum at a single mutant position is often a superposition of several 
components 68. In general, each component of an ESR spectrum can be simulated on the 
basis of different dynamic models 69. In order to accurately resolve spectroscopic 
parameters of each spectral component (so that the total multi-component simulated 
spectrum fits the experimental spectrum) a good optimization method needs to be applied. 
The advanced multi-component spectral analysis 67,68 (see Figure 4) was applied in this 
thesis (it is publicly available online as EPRSIM-C: A Spectral Analysis Package 70). 

 
Figure 4. Overview of the method of ESR spectral analysis. Spectral analysis is based on multi-
component spectral simulations and optimizations of spectral parameters (left), multiple solutions 
filtering, condensation and presentation (center), and multiple data analysis (right). 

After the experimental data is measured and prepared (often a file conversion is 
needed when transferring the spectra from the spectrometer for further analysis) the 
analysis of ESR spectra can be organized into the following steps: 

1. ESR spectral simulation and spectral parameters optimization. An appropriate 
simulation model has to be chosen for simulation of an experimental ESR spectrum. The 
maximal complexity, i.e., the number of spectral components, has to be defined. In addition 
optimization constants based on experimental parameters (ESR centre field and sweep, 
magnetization tensors, etc.) have to be defined as well as the initial spectral parameters. The 
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latter are then optimized with a hybrid evolutionary algorithm. The result of spectral 
simulations and optimization of spectral parameters is a population of multiple solutions, 
which fit the experimental spectrum (left box in Figure 4). 

2. GHOST condensation. In order to make a relevant characterization based on 
spectral simulations the multiple solutions have to be filtered according to the quality of the 
fit and the solution density and the groups of solutions have to be recognized (central box in 
Figure 4) into so-called motional patterns. Detected motional patterns then have to be 
checked by studying corresponding contributions in the total spectrum line-shape. 
Sometimes a meaningless combination of spectral parameters may appear when the 
optimization algorithm tries to fit a spectral line-shape with artifacts. Such motional 
patterns are eliminated from further analysis, although they may be used to detect artifacts. 

Initially, GHOST condensation and GHOST presentation algorithms (central box in 
Figure 4 were developed in the Mathematica environment, which was however too slow for 
high-throughput analysis. As a part of this thesis all the analysis algorithms were 
reprogrammed in a faster and more flexible independent software program called 
GHOSTMaker, a part of EPRSIM-C: A Spectral Analysis Package 70.  

3. Multiple data analysis. In multiple ESR data analysis (several mutant positions, 
temperature or concentration series) the first two steps are repeated for each spectrum of a 
series. In case of the temperature measurements, an additional check of the detected 
motional patterns may use the fact that the local dependence of a spectral parameter 
(correlation time, local motional restriction, polarity, etc) on the temperature has to be 
monotonous. The recent version of GHOSTMaker is capable of simultaneous presentation 
of multiple ESR data (right box in Figure 4), allowing also the comparison of several 
spectral series and data export to other analysis software packages. 

The efficiency of the spectra optimization algorithms has been enhanced as 
described in Chapter 2. This analysis approach then was applied to interpret the ESR data 
from the light-harvesting complex CP29 (Chapter 3), and to develop a new SDSL-ESR-
based method of protein structure characterization (Chapters 4 and 5). 

1.3 Protein structure modeling and optimization 

1.3.1 Protein structure modeling 

Five choices have to be made when modeling a biomolecular system: 1) the scale of 
structure and dynamics have to be defined; 2) the degrees of freedom for the elementary 
particles (e.g. atoms, atom groups) that define the dimension of the conformational space 
have to be determined; 3) the force field (what interactions are taken into account) has to be 
chosen; 4) a sampling scheme of the conformational space has to be set up; and 
5) boundary conditions (for dynamics simulations) have to be identified 71. 
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In order to produce efficient simulations that create calculation output in a short 
period of time, the model may split dynamics of the biomolecular system from its structure. 
Thus, the modeling of a static protein structure has no time scale and relies only on the data 
about the structures of amino acids, chemical bond lengths and bond angles. The backbone 
(main chain) of a protein is modeled by setting the secondary structure. Then amino-acid 
side chains are attached to the backbone. To define particular conformations of amino acid 
side chains the rotamer libraries can be used 6,7. At this step the structure of the protein can 
be compared with one in the Protein Database (if it is available) and/or checked by 
employing the potential energy calculations, while determining possible steric conflicts. 
More advanced methods of structure validation also include information about various 
structure stabilizing effects, e.g., sulfide bonds, hydrogen bonding, and other stabilizing 
weak interactions. 

The identification of the interactions that stabilize protein structures has provided the 
framework for the development of computational models of protein structure and dynamics. 
To provide an accurate representation of the protein, these models include terms that reflect 
bond stretching, bending, and rotation. Although bond lengths and angles are formally 
determined by interactions of electrons and nuclei as described by quantum mechanics, 
these interactions can be treated by simple physical models. For example, the bond-
stretching potential, V(r), is determined by calculating the distance for each covalent bond, 
r, and comparing that distance to an ideal value, rstandard. A similar expression can be 
written for bending and also for bond rotation. All potentials are collected into a single 
expression, and each atom is uniquely identified by specific interactions with every other 
atom. The expectation for a protein is that the structure will adopt a conformation that 
represents the lowest-possible-energy state as given by the total potential energy 4. 

1.3.2 Comparison to molecular dynamics simulations 

The application of MD simulations has started to make new and specific quantitative 
predictions about biological properties not yet reported from experiment 72-74. The constant 
increase of modern computer computational power and further development of MD 
simulation packages including coarse-grained methods 75,76 will gradually solve the current 
difficulties of short simulation time length and poor conformational sampling. In addition, 
certain work has to be done to verify simulations, force fields and simulation methods 72,77. 

As compared to related papers on SDSL-ESR based on MD simulations 51,78-85 our 
approach has the following advantages: 1) the simplicity of the underlying physical principles in 
the structural model; 2) the simultaneous analysis of multiple SDSL-ESR data from all available 
mutant positions; 3) no need for dynamics trajectories as compared to MD (our approach 
completely relies on conformational space modeling as described in the Chapter 4); 4) a 3-4 
orders of magnitude faster speed as compared to calculations based on MD simulations.  
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1.3.3 Optimization methods 

Optimization is an important tool in the analysis of complex systems. Mathematically 
speaking, optimization is the process of minimizing or maximizing of a function subject to 
constraints or variables 86. A good example is maximization of the efficiency in the design 
and operation in a manufacture production process, e.g. optimization of a gas turbine for the 
maximum efficiency and minimal costs. 

In our work we apply optimization when solving an inverse-problem, i.e., searching 
for the parameters of a model that lead to a satisfactory description of the experimental 
data. First of all, this requires optimization of the simulated ESR spectra (minimization of 
the fitting criterion). This is the subject of Chapter 2. Secondly, this requires the 
optimization of the structure of the protein system (tuning the structure in order to improve 
the fit of the simulated local restrictions to the experimentally obtained restrictions), which 
is discussed in Chapter 5. 

Optimization is a computationally demanding process, and that is why it is usually 
implemented for computer calculations in optimization algorithms. There are no universal 
optimization algorithms, and each particular problem may require a separate algorithm or at 
least a special modification of an existing algorithm. Several optimization methods 
(stochastic and deterministic) may be combined. For example, when searching for multiple 
optimal solutions two major characteristics should be satisfied: the diversity and the 
accuracy of multiple solutions. To provide both, an algorithm must be able to efficiently 
perform both two corresponding processes: exploration and exploitation of the search 
space. 

In general, the optimization problem often can be simplified. For example, in case of 
correlated parameters the number of parameters can be reduced. The dimension of the 
search space can also be reduced by separating linear and nonlinear parameters as there is 
often a fast analytical solution for linear parameters optimization.  

In both of our cases we deal with a multi-modal optimization (multiple local 
minima) of biophysical models of many parameters. We minimize the fitting function, 
which describes how well the simulated data is like the experimental data. The parameters 
are usually defined within certain intervals. 

1.4 Photosynthetic minor antenna complex CP29 

Oxygenic photosynthesis is one of the most fundamental processes sustaining life on Earth. 
Solar energy is converted into the chemical energy of an ATP molecule, and the reducing 
equivalents used for the conversion of CO2 into carbohydrates (the building blocks of 
biomass) are generated. The first step in this process, light-driven charge separation, is 
conducted by Photosystem I and Photosystem II, two chlorophyll-binding protein 
complexes embedded in the thylakoid membranes of cyanobacteria, algae and plants 87,88. 
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In Photosystem II the outer antenna system consists of 4 complexes: LHCII, the 
major antenna subunit, present as a trimer in the membrane, and three minor monomeric 
complexes CP24, CP26, CP29 89,90 (See Figure 5A). The minor complexes contain 15% of 
the pigments of PSII and they are located between LHCII 91,92 and the core that contains the 
reaction centers where charge separation takes place. 

 
Figure 5. Photosynthetic minor antenna complex CP29. A. Overlay of X-ray structures of protein 
complexes on to the lumenal top view of the 3D structure of the spinach LHCII–PSII supercomplex 
derived from cryo-EM and single particle analysis 90. B. 3D structure of LHCII (prepared in Argus 
Lab). C. Schematic presentation of the structure of CP29 93 with positions of Chl a (dark green), 
positions of Chl a or b (light green) and the two central carotenoids (grey) 94. The red dots and 
numbers indicate the position of the labeled residues used in this work. 

Besides light-harvesting, minor antenna complexes are also involved in 
photoprotective mechanisms that are used by plant to dissipate excess of energy under 
high-light conditions 95,96. Structural changes may be responsible for a switch between 
light-harvesting state and the quenching state 96. It has been proposed that phosphorylated 
LHCII physically moves from PSII to PSI to balance the energy distribution between and 
optimize the rate of electron transfer through the two photosystems or induce cyclic 
electron flow around PSI 97-99. In this state transition, CP29 may provide a functional link 
between a mobile LHCII antenna and the PSI core 88,100. 

Structural information on the minor antenna complexes CP24, CP26 and CP29 is 
still lacking, but sequence analysis and site-selected mutagenesis have revealed that they 
share a high structure similarity with LHCII 94,101,102. CP29 is the largest of the outer 
antenna complexes of PSII, and it contains a long N-terminal domain (around 100 amino 
acids).  Although the structure of CP29 has not been resolved, the high sequence homology, 
especially in transmembrane domain suggest an organization similar to that of LHCII, 
while the organization of the N-terminal domain differs from that of LHCII. 

To obtain structural and dynamical information of CP29, in particular on its N-
terminal domain picosecond fluorescence techniques have been used 93 providing distances 
between specific sites of the N-terminal domain and the chlorophyll molecules. We used an 
alternative method, SDSL-ESR spectroscopy in combination with multi-component 
spectral analysis to obtain additional insight into the structural organization and dynamical 
properties of the N-terminal domain of CP29 (see Chapter 3). 

C B A 
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1.5  Major coat protein of bacteriophage M13 

The major coat protein of bacteriophage M13 was chosen as a simple model system to 
develop and tune the protein structure optimization approach.  

 

Figure 6. Major coat protein of bacteriophage M13. A. Schematic illustration of bacteriophage M13 
filament. B. Arrangement of the coat protein subunits in M13 103. C. Curved α-helix model of M13 
coat protein found by X-ray crystallography 104 deposited in the Protein Data Bank as PDB file 1IFJ. 
D. Best-fit superposition of 25 structures of M13 coat protein in SDS micelles 105 PDB file 2CPS. 
E. FRET data-based 100 best-fit structures of AEDANS-labeled M13 coat protein in DOPC/DOPG 
vesicles 106. F. Primary structure of M13 coat protein (gp8). 

Bacteriophage M13 has been thoroughly studied by various biophysical techniques 
and the structure of the virion protein sheet was determined by X-ray fiber diffraction. The 
viral particle is composed of single-stranded circular DNA molecule that is encapsulated in 
a long cylindrical protein coat. The protein coat is composed of about 2800 copies of the 
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major coat protein (gp8). At both termini there are five copies of each of the two minor coat 
proteins, gp7 and gp9 at one end and gp3 and gp6 at the other end (see Figure 6) 107,108. A 
detailed description of the filamentous bacteriophages has been reviewed 108. In addition, 
extensive knowledge about bacteriophage M13 and recent technological advances has led 
to a successful application of M13 virus in Nanotechnology 109,110.  

The major coat protein is a small protein with a molecular weight of about 5240 Da. 
It forms a 1.5-2.0 nm thick flexible cylindrical shell (see Figure 6B). It is 50 amino acids 
long and it is composed of three specific domains: a hydrophobic core, an acidic N-terminal 
and a basic C-terminal domain (Figure 6F). The secondary structure is largely α-helical 
(also proven by primary sequence prediction) with several flexible positions in the N 
terminus 108.  

After integration into the lipid bilayer, the M13 coat protein adopts a transmembrane 
configuration. The structure of the protein, the dynamics, and protein embedment into the 
lipids were studied with X-ray crystallography 104 (Figure 6C), NMR spectroscopy 105,111 
(Figure 6D), site-directed labeling in combination with ESR 108,112-118 and fluorescence 
spectroscopy 106,119-122 (Figure 6E), circular dichroism spectroscopy 123 and other methods. 

According to X-ray crystallography the protein is a slightly curved α-helix extending 
from the N-terminus to the C-terminus 104. Studies based on NMR spectroscopy 105,124,125 
suggest that in micelles the protein contains two α-helical segments, residues 7-16 and 25-
45. NMR spectroscopy in a dehydrated lipid bilayer 126 resulted in a 3D structure where the 
first α-helical segment (residues 8-18) rests on the membrane surface, the transmembrane 
α-helix (residues 21-45) crosses the membrane at an angle of 26° up to residue Lys40, 
whereas the helix tilt changes to 16°, which was also observed previously by solid-state 
NMR 127. 

The results obtained with SDSL-ESR spectroscopy for the protein in different lipid 
bilayers (14:1PC-22:1PC) 113-115,117 were generally in accordance with two α-helical 
segments model, while the modeling based on the recent fluorescence data obtained for the 
protein in DOPC/DOPG vesicles suggested a model of two α-helical domains with an 
unstructured region (residues 1-9) and a general tilt (residues 12-46) of 18° with respect to 
the membrane normal. The state of art regarding M13 protein can be found in a recent 
publication 102. 

We used M13 coat protein to test our method of calculating the restrictions of the 
conformational space (Chapter 4) and to develop a new protein structure optimization 
approach (Chapter 5). 
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1.6 About this thesis 

In this thesis the problem of membrane protein structure characterization is tackled with a 
spectroscopic SDSL-ESR technique enhanced with computational methods, i.e., multi-
component spectrum analysis, modeling of protein conformations and protein structure 
optimization. 

Chapter 2 describes the details of multi-component ESR spectra analysis. A so-
called GHOST condensation method is employed for filtering, grouping and presenting of 
the multi-solution results. This analysis is being enhanced to enable the handling of large 
sets of spectroscopic data (e.g., for the joint analysis of SDSL-ESR spectra from multiple 
sites of spin-labeled proteins). 

Chapter 3 describes the application of this approach to analyze the ESR data from 
ten spin label positions at the N-terminal domain of the light-harvesting protein complex 
CP29. The multi-component ESR spectra analysis permit to trace the structural 
organization of the long N-terminal domain of CP29 leading to a structural model for its N-
terminal domain. 

Chapter 4 introduces a novel way to translate the local structural constraints gained 
by SDSL-ESR data into a low-resolution structure of a protein by simulating the 
restrictions of the local conformational spaces of the spin label attached at different protein 
sites along the primary structure of the membrane-embedded protein. The proposed 
structural model takes into account the restricting effect of the protein backbone, amino 
acid side chains and lipid environment. 

In Chapter 5, the sensitivity of this approach is tested for artificial oligopeptides and 
then for membrane-embedded M13 major coat protein decorated with a limited number of 
strategically placed spin labels by employing high-throughput site-directed mutagenesis. 
This chapter introduces an optimization algorithm, which is used to optimize the 
parameters of the protein-lipid model by improving the fit of the simulation data to the 
experimental conformational space data. The result of the optimization, i.e., a family of 
best-fit structures of membrane-embedded M13 protein consistent with the available SDSL-
ESR data is compared to a recent model based on site-directed fluorescence labeling.  

Chapter 6 summarizes this thesis with an overview of our latest progress in the field 
of protein structure characterization based SDSL-ESR spectroscopy, protein conformational 
space modeling, and structural optimization. 
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Abstract 

Complexity of biological systems is one of the toughest problems for any experimental 
technique. Complex biochemical composition and a variety of biophysical interactions 
governing the evolution of a state of a biological system imply that the experimental 
response of the system would be superimposed of many different responses. To obtain a 
reliable characterization of such a system based on spin-label Electron Spin Resonance 
(ESR) spectroscopy, multiple Hybrid Evolutionary Optimization (HEO) combined with 
spectral simulation can be applied. Implemented as the GHOST algorithm this approach is 
capable of handling the huge solution space and provides an insight into the "quasi-
continuous" distribution of parameters that describe the biophysical properties of an 
experimental system. However, the analysis procedure requires several hundreds of runs of 
the evolutionary optimization routine making this algorithm extremely computationally 
demanding. As only the best parameter sets from each run are assumed to contribute into 
the final solution, this algorithm appears far from being optimized. The goal of this study is 
to modify the optimization routine in a way that 20-40 runs would be enough to obtain 
qualitatively the same characterization. However, to keep the solution diversity throughout 
the HEO run, fitness sharing and newly developed shaking mechanisms are applied and 
tested on various test ESR spectra. In addition, other evolutionary optimization parameters 
such as population size and probability of genetic operators were also varied to tune the 
algorithm. According to the testing examples a speed-up factor of 5-7 was achieved. 

2.1 Introduction 

Complexity is one of the basic properties of natural biological systems. It qualitatively 
describes the number of (biochemical or biophysical) patterns/solutions that coexist in a 
system. In a pure system, only one solution can describe the entire system, whereas in 
complex systems distributions of solutions can exist (see Figure 1). 

 
Figure 1. Biosystem complexity axis of increasing complexity from simple single-solution to quasi-
continuous distribution of solutions. 

The complexity of a biological membrane, for example, originates in its biochemical 
composition of a few hundred of lipids and many different proteins – channels and pumps, 
as well as membrane enzymes and receptors. In such a system, the constituents exhibit 
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different interactions to each other, from local steric and Van der Waals to more long-
ranged Coulomb and dipolar interactions. The intensity and orientation of these interactions 
strongly depend on the type of interacting molecules as well as the potentials of the 
neighboring molecules. All these parameters make the biological membrane a very 
complex system in which many motional patterns can be found. 

ESR spectroscopy in combination with nitroxide spin labeling (SL-ESR) has proven 
to be a powerful technique for the exploration of heterogeneity and motion in biological 
systems 1,2. The time scale of SL-ESR appears to be in the nanoseconds range, which is 
exactly the range needed to observe possible motional anisotropy of local rotational 
motions through motional averaging. The difference in anisotropy of rotational motion can 
be used to distinguish lateral domains together with other spectroscopic parameters such as 
the rate of motion, polarity, spin-spin broadening, etc. However, to determine the picture of 
the actual heterogeneity within biomembranes, a special methodology that includes 
advanced spectral analysis and inverse-problem solving techniques needs to be applied 3. 
Such an analysis is based on mathematical modeling, spectrum fitting and spectral 
parameter optimization by means of evolutionary computation. A large amount of 
information evolves from such an approach. Therefore a special method of solution 
condensation called GHOST was developed 1. It incorporates solution density filtering, χ2 
goodness filtering, solution-space slicing, and domain determination, leading to a graphical 
presentation of the system parameters. This advanced approach named Hybrid Evolutionary 
Optimization (HEO) was shown to be powerful enough to study complex heterogeneous 
systems 1, but the computational demand appeared to be an obstacle for wider usage of the 
method. 

The core of the problem lies in the optimization routine. To obtain a reliable result 
even in the case of quasi-continuous problems, the HEO procedure has to be executed at 
least 200 times. Each particular run consists of 100 generations with a population size of 
300 candidate solutions that are exposed to various genetic operators. Since an average 
operator spends up to 10 spectrum calculations, HEO on average spends 60 million 
spectrum calculations. As a single spectrum calculation takes around 10 ms on a 1 
GFLOPS processor, this results in 200 hours of computer time spent for a single 
characterization. Therefore, our aim was to enhance the HEO routine to speed up the 
approach to make it more applicable. 
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2.2 Theory and methodology 

2.2.1 ESR spin labeling 

ESR spectroscopy in combination with spin labeling can be applied to study the properties of 
biological membranes in a nondestructive way. In this approach spin-labeled analogs of 
different molecules are introduced into a system to report about their structural and motional 
properties. Since the nitroxide moiety is a small perturbation to the whole molecule, one can 
approximate that the description derived from spin probes is a reasonable approximation for 
the non-labeled molecules. This fact enables us to use ESR to explore biological systems in 
vivo so that there is no need for (bio)chemical extraction the subsystem of interest. In this 
way, various coexisting states of the system can be detected and characterized. 

As was mentioned in the Introduction, ESR spin labeling inherits a unique sensitivity 
to the motional and polarity properties of the labeled molecules providing an opportunity to 
extracting information on structure and dynamics of the lipids and membrane proteins (i.e. 
restriction and rate of rotational motions, relative membrane locations, and oxygen profile). 
The complexity of such a system results in a large number of solutions superimposed in the 
ESR spectrum of such a labeled system (Figure 2). 

 
Figure 2. Superimposed four component ESR spectrum. The total ESR spectrum is a sum of four 
spectral components derived within described simulation model and determined by four sets of the 
following spectral parameters {ϑ, ϕ, τc, W, pA, prot, d}. 

2.2.2 ESR spectrum modeling 

Generally, to describe the ESR spectra of spin labels, the stochastic Liouville equation 
should be used 4-6. However, under physiological condition the majority of the local 
rotational motions is fast with respect to the ESR time scale – as calculated by numerous 
molecular dynamics simulations – and therefore the fast motional approximation can be 
applied, reducing the computational demand by a factor of 100. 
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Since the basic approach has been already discussed elsewhere 7,8, we will emphasise 
only the physical background of the spectral parameters involved in our calculations. 
Firstly, one or two parameters are used in partial averaging of the rotational motion. While 
averaging the magnetic properties of the spin Hamiltonian for spin probes directed at every 
allowed direction with respect to the external magnetic field an order parameter S or 
opening cone angle ϑ (that defines the maximal tilt angle) and asymmetry cone angle ϕ 
(that describes the maximal restriction of spinning) will be applied. Secondly, the traces of 
the interaction tensors g and A are linearly corrected with pA 

9 and Prot 10 parameters to 
take into account the effects of polarity and proticity, respectively. Thirdly, when 
calculating the convolution of the magnetic field distribution and basic lineshape, in 
addition two linewidth parameters are applied: a Lorentzian-type line is defined in the 
motional narrowing approximation 11 with a single (effective) rotational correlation time, τc 
and an additional broadening constant W. The latter arises primarily from unresolved 
hydrogen superhyperfine interactions and contributions of paramagnetic impurities (e.g. 
oxygen), external magnetic field inhomogeneities, field modulation effects, and spin-spin 
interaction. 

To take into account the superposition of motional/polarity patterns, this basic set of 
six lineshape parameters ϑ, ϕ, τc, W, pA and Prot is expanded for the number of spectral 
components Nc. In addition there are Nc-1 weights d of these spectral components. 
Altogether, there are 7Nc-1 spectral parameters, which have to be tuned by the optimization 
routine. Taking into account the resolution limit of SL-ESR which is around 30 parameters, 
this allows the usage of at most four spectral components.  

2.2.3 Optimization 

An optimization routine is used to find the set of spectral parameters that produces the best 
fit to the experimental spectrum. The goodness of fit (optimization objective function) was 
chosen to be the reduced χ2 criteria: 
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where yexp and ysim are the experimental and simulated data, respectively, σ is the standard 
deviation of the experimental points, N is the number of spectral points, and p the number 
of model parameters. 

For the optimization, HEO routine, a combination of the Genetic Algorithm (GA) 
with Downhill-Simplex local search was applied. Since the optimization scheme is 
presented elsewhere 12, we only briefly report on the implemented algorithm. The routine 
starts with a random initialization of solutions and continues with the tournament selection 
and application of genetic operators for 100 generations. The 3-point crossover with 
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probability of 0.7 and uniform mutation with probability of 0.01 are applied together with 
certain knowledge-based operators and local improvements (performed with Downhill-
Simplex with probability of 0.002, see Figure 3) 1,12. The elite set (2% of the population 
size) is used to keep track of the best individuals found so far. One HEO consists of 100 
generations with a population size of 300 individuals and provides the best parameter set 
found. In the 200 HEO runs a group of best parameter sets can be accumulated. This 
information is then filtered, grouped and graphically presented with a so-called GHOST 
condensation algorithm. 

Taking only one best parameter set from each run can be a waste of computer time. 
In fact, HEO converges to the best solution region within 20-80 generations, thus creating a 
great number of similar solutions after 100 generations. Therefore, HEO was modified to 
increase the solution diversity within the population while preserving the same level of 
convergence rate. In such a case, it should be possible to include more than one parameter 
set into the final group of solutions and consequently rely on a smaller number of runs. 

To maintain the population diversity throughout the GA generations and not to affect 
convergence, one should modify the selection scheme or add new operator(s) to keep the 
diversity within the population. In order to do that, one should clearly understand the HEO 
as well as the problem search space. 

 
Figure 3. Schematic presentation of parameters search space and the effect of the local mutation 
procedure responsible for fine-tuning. Due to the noisy spectra and finite resolution of the local 
optimization routine starting approximations (white circles) are optimized into more accurate 
solutions (gray circles) according to the local phase-space landscape. A. In case of a flat valley 
(plateau in multidimensional space), the results of the local optimization routine strongly depend on 
the starting approximation. B. In case of sharply defined minimum, local optimization routine 
provides similar results independently of starting approximation unless starting approximation is too 
far from the local minimum. 

2.2.4 Parameters search space 

The optimization process should be thought of as searching for the minima in the landscape 
of the parameter search space (phase-space), which may contain both local and global 
minima. A powerful optimization routine should be able to find global minimum(a), which 
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can be of different types (Figure 3), i.e. well-defined minima (Figure 3B) or a flat minimum 
valley minima (Figure 3A). An optimization routine should therefore keep convergence to 
the minima of type B (discrete problems) and maintain the diversity to be able to reveal the 
minimum valleys (in continuous problems) already in a single run.  

2.2.5 Population diversity in genetic algorithm 

Genetic algorithms are general purpose global search algorithms that use principles of natural 
genetics. Simultaneously, a population of possible solutions is being optimized. A simple 
genetic algorithm (SGA) 13 is suitable for finding the optimum of a unimodal function in a 
bounded search space. However, both analysis and experiments show that the SGA cannot find 
multiple global maxima of a multimodal function 13-15 or a function with a flat global minimum, 
which is an extreme limit of the multimodal function. This limitation can be overcome by a 
mechanism that creates and maintains several subpopulations within the search space, referred 
to as “niching methods”. There exist sequential niching methods 16,17; parallel niching methods 
(sharing 18, crowding 15,19 and clearing 14); speciation methods 20-22 and clustering 23,24; multi-
population methods 25 (island models 26,27 and migration models 28). 

Another way to find multiple optima is to make several runs of an ordinary GA. In 
each run the GA typically converges to a different optimum. Thus, several optima are 
found 29. Exactly this strategy was used in the previous multiple HEO-based approach.  

Since the methods that assume creating subpopulations do not match with our 
specific problem, we chose the sharing parallel niching method to maintain diversity within 
a single run together with a multiple run approach. 

2.2.6 Maintaining population diversity: sharing and shaking operators 

Sharing 15,18 requires that fitness is shared as a single resource among similar individuals in 
a population of solutions 30. The fitness sharing method modifies the search landscape by 
changing the fitness function (2), i.e. the value of χ2, in densely-populated regions 31:  
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It returns ‘1’ if the elements are identical and ‘0’ if they cross some threshold of 
dissimilarity, specified by constant σshare. Here α is a constant, which regulates the shape of 
the sharing function. As a result of the sharing operator application, the population becomes 
better distributed in the search space which improves the population diversity (Figure 4A). 

 
Figure 4. Schematic presentation of the fitness sharing operator function. A. Top: In a non-sharing 
routine crowding at the local minima is allowed, since there is no operator that would maintain 
diversity. Bottom: In a sharing-routine, fitness function is increased according to the density of 
solution, aiming to prevent crowding. B. Schematic presentation of the Gaussian shaking operator. 
Shaking operator implies a Gaussian random generator that provides a small deviation to the value 
of each parameter. The error bars indicate the width of Gaussian probability distribution of these 
deviations. The standard relative uncertainties of the spectral parameters {ϑ, ϕ, τc, W, pA, prot, d} 
are {0.02, 0.02, 0.04, 0.035, 0.035, 0.04, 0.02}, respectively, which follow average uncertainties that 
are found empirically for these parameters within the simulation model. 

Shaking is a new operator that was developed to provide small Gaussian-like 
deviations to the spectral parameters (Figure 4B) before the crossover operator is applied. 
The shaking algorithm prevents “grid” formation and preserves the diversity in the solution 
population (for explanation of the grid problem see Discussion section). 

2.2.7 Projection principle and GHOST condensation 

The large amount of solutions resulting from the multiple HEO runs should be condensed 
and grouped together to construct a discrete or quasi-continuous description of the system. 
If the proposed model complexity (4 spectral components in our case) is sufficient to 
describe the system, the final description is also discrete. However, when the proposed 
complexity is lower than in reality, the model tries to describe the most important features 
of the system (ESR spectra in our work). In this case, the landscape at the point of the 
global minimum changes into a flat valley, and consequently, HEO needs to resolve the 
distribution of solutions describing this optimum region of the parameter search space. In 
this way, multiple-HEO approach incorporates the “projection principle” idea 1,3. 

After solution filtering according to the local solution density and goodness of fit, 
performed in the same way as defined before 1, the GHOST condensed results are presented 
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in 2D cross-sections {S-τc, S-W, S-pA} (Figure 5). The color of any solution point in the 
GHOST diagram is defined by RGB specification, where the intensity of each color 
component (red, green, blue) represents the relative value of the spectral parameters 
τc, W, pA in their definition intervals {0 – 3 ns}, {0 – 4 G}, and {0.8 – 1.2}, respectively 
(Figure 5B). This technique enhances the possibility to distinguish groups of solutions, and 
to explore optimized values of model parameters. 

The most important property of the GHOST algorithm is that there is no need to 
define the complexity (the number of different motional patterns) in advance – it comes out 
automatically from the GHOST condensation and graphical presentation. 

 
Figure 5. A. An example of the GHOST solution presentation of the spin labeled horse neutrophils 
taken from bronchoalveolar fluid (BAL) from horses suffering from the chronic obstructive 
pulmonary disease (COPD). Horses were sedated with medetomidine purchased from Domosedan 
(Turku, Finland). A 2.5-m long endoscope was introduced through the pre-cleaned and topically 
anesthetized nostril and advanced until it wedged in a bronchus. 300 ml of pre-warmed sterile 
physiological saline solution was infused through the biopsy channel into the bronchus and 
immediately re-aspirated into a sterile flask cooled in ice. Polymorphonuclear leukocytes were 
isolated from whole BAL samples, spin labeled with MeFASL(10,3), centrifuged, transferred to quartz 
capillary and measure at Bruker ELEXSYS E500 9.6 GHz spectrometer (field sweep of 10 mT; 
modulation: 0.15 mT, 100kHz; 5 scans of 40 s with 40 ms of time constant), fitted with ESRSIM BBW 
software and characterized using GHOST condensation procedure. B. Color legend. The RGB (red, 
green, and blue) color of any particular solution point codes the relative values of parameters τc, W, 
and pA in their definition intervals. 

2.3 Results and discussion 

2.3.1 Evaluation criteria 

To judge the success of the modification of the HEO algorithm the following criteria were 
selected: GHOST quality (solution diversity, solution domains determination, model 
parameters distribution); minimal fitness achieved in χ2

min, and fitness deviation σ(χ2), that 
is 40% of the best χ2

min values; runs contribution histograms; and maximal detected 
solution density ρmax. To check the generality of the new algorithm we analyzed two types 
of ESR spectra: experimental ones (from membranes and membrane proteins) and synthetic 
(discrete and continuous). 

A B
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2.3.2 Multiple runs 

Before making any implementation changes in the code, we simply reduced the number of 
HEO runs from 200 to 20 and increased the contribution of each run (more than one best 
parameter set). The results for a typical experimental spectrum are shown in the Figure 6 
where the GHOST diagram (Figure 6B) and contribution histogram (Figure 6C) are compared 
with the original GHOST diagram based on the 200 runs (Figure 6A). It can be easily seen 
that this is not the right way to reduce the computational demand of the problem. With the 
modified approach, the GHOST diagram (Figure 6B) does not resemble the original one 
(Figure 6A). In addition it can be seen that only a few runs (such as the first, seventh, ninth 
and seventeenth) contribute to the GHOST presentation as it is shown by runs contribution 
histogram in the Figure 6C, whereas the other runs (i.e. the third, fourth, tenth, etc.) have no 
contribution at all. This causes the loss of solution diversity, a worse distribution of χ2 (see 
minimum value and distribution width in “20 runs” column of Table 1 and a wrong solution 
domains determination (Figure 6B). 

In addition one also can see a higher solution density as a consequence of the crowding 
in the search space. And even worse result is achieved when the modified “20 runs” approach 
is tested on a continuous problem: compare original “200 runs” (A) and “20 runs” (B) in the 
Figure 8. It can be easily seen that the results do not meet the original GHOST distribution. 
The bad GHOST picture arises from the fact that the contribution of the runs is extremely 
uneven (Figure 8B), originating in a solution crowding. 

 
Figure 6. Typical characterization of spin labeled real membrane (see the caption to the Figure 5). 
A. GHOST as a result of 200 runs of HEO where only one solution is extracted from a single run. B. 
GHOST as a result of 20 runs of the same HEO algorithm where on average 10 solutions are taken 
from each run. C. Runs contribution histogram for the case of 20 runs where the number of runs is 
shown along the x-axis and number of solution (taken from particular run) along the y-axis. 

According to the literature, the sharing implementation could change the result 15,18. 
To test the sharing approach the continuous problem was chosen (Figure 8A). The results 
of this test in terms of the runs contribution histogram and GHOST cross-section are shown 
in the Figures 8C. It can be seen that the GHOST representation better resembles the 
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original one, and also the runs contribution becomes more even. However, the distribution 
of χ2 is worse (see the minimum value and the distribution width in “sharing” column of 
Table 2). This result was not good enough, even when we increased the population size 
from 300 to 600 (to keep convergence at the same level due to the sharing implementation). 

Table 1. Optimization parameters after 200 and 20 runs for the real membrane spectrum (for the 
experimental preparation see the caption to the Figure 5). 

Criteria 200 runs 20 runs 
χ2

min 3.4 4.09 
σ(χ2) 2.04 1.87 
ρmax 64.2 71.5 

2.3.3 Grid problem and shaking 

By careful analysis of the parameters in the resulting solution distribution, we found the 
origin of the unsuccessful implementation of the sharing approach – the shortcoming of the 
three-point crossover, one of the most important operators in the GA algorithm. ”Genetic 
material” related to good model parameters, spreads and copies among individuals in the 
population. After a few tens of generations the population forms a ”grid” in the search 
space (Figure 7A) as a consequence of the rough action of the 3-point crossover operator. 
This leads to the loss of solution diversity. 

 
Figure 7: Schematic presentation of the “grid” problem (A) for three cross-sections of the phase-
space and its solution (B) in single run. A. Due to the standard multipoint crossover, subgroups of 
parameters are “transferred” between generations untouched, resulting in a grid-like distribution of 
the GHOST solution (single run). The lines indicate very high vertical and horizontal densities of 
solutions that evolve from copying of parts of parameter sets within the optimization routine. 
B. Single run GHOSTs (with population size 600). Original version with crowding problem (left) – 
several solutions are crowded in many regions and the version with shaking that maintains diversity 
(right) – solutions crowded in each point previously now spread over the flat minima region with the 
help of shaking operator. 

In the HEO algorithm only a local search operator is capable to restore the diversity and 
eliminate the ”grid”, but due to the high computational cost and extremely high impact on the 
convergence to local minima the probability of the Downhill-Simplex local search operator 
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should be and is very low. Therefore the local search operator cannot be used to maintain 
population diversity. Instead, a new idea of “shaking” was introduced in our work keeping the 
standard crossover. As it was described in the Methods section, the shaking operator introduces 
a small deviation in parameters, thereby eliminates the effect of the “grid”. 

Indeed, the implementation of the shaking operator allowed the algorithm to 
overcome the solution crowding and increased the population diversity already in a single 
run. This result is shown on the Figure 7B for a continuous problem that represents the 
most extreme case of the complexity. 

The results of the implemented shaking operator are shown in the Figure 8. One can 
see that the shaking operator considerably improves the result of a single run as the GHOST 
pattern from 20 runs (Figure 8D) is very similar to the original one (Figure 8A), the runs 
histogram is very even Figure 8D), and finally the distribution of χ2 is very good (Table 2). 

 
Figure 8: Comparison of the effectiveness of different multi-run HEO-GHOST approaches on the 
synthetic 15-component spectrum together with runs contribution histogram. A. GHOST and runs 
contribution as a result of 200 runs of original HEO routine. B. GHOST and runs contribution as a 
result of 20 runs of the original HEO routine. C. GHOST and runs contribution as a result of 20 runs 
of the modified HEO routine that includes sharing operator. D. GHOST and runs contribution as a 
result of 20 runs of the modified HEO routine that includes shaking operator as described in the text. 

Table 2. Comparison of the χ2 distributions and solution densities for the different multi-run HEO-
GHOST approaches on the synthetic 15-component spectrum that simulates quasi-continuous 
distribution of spectral parameters (see also caption to the Figure 8). 

Criteria 200 runs 20 runs sharing shaking 
χ2

min 1.17 1.22 1.65 1.24 
σ(χ2) 0.9 0.4 1.29 0.9 
ρmax0 69.5 75.7 69 66.1 
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2.3.4 Testing of the modified algorithm 

In further tests, the algorithm with the new shaking operator was also applied to several 
experimental and synthetic spectra in order to cover a wide range of possible systems related 
to discrete and continuous problems. The results of characterizations of four different 
examples are shown in the Figure 9, where the GHOST diagrams of different approaches are 
compared (original “200-runs” approach is compared against “shaking-20-runs” approach). 
The GHOST diagrams are very similar, confirmed also by the comparison of the averaged 
values and the distribution widths of the condensed parameters (table is not shown). 

 
Figure 9: Comparison of GHOST plots of original-HEO approach versus shaking-modified-HEO 
together with runs contribution histogram for the shaking-modified-HEO based on 20 runs. The 
original-HEO approach with 200 runs (above) is compared versus modified-HEO (with shaking) 
based on 20 runs (bellow). A. GHOST plot and runs contribution of the synthetic discrete 2D 
spectrum that was constructed from two spectral components with the known parameter set and 
optimized as unknown one. B GHOST plot and runs contribution of the synthetic quasi-continues 
spectrum (see the caption to the Figure 8). C. GHOST plot and runs contribution of the spectrum of 
the real membranes of breast cancer cells MT1 in the exponential phase of growth: MT1 breast 
cancer cells were seeded at approximately 106 cells in a culture flask with surface area of 75 cm2, 
spin labelled with the methyl ester of 5-doxyl palmitate, MeFASL(10,3), and measured under the 
same conditions as the membranes of horse neutrophils (see the caption to the Figure 6). D. GHOST 
plot and runs contribution of the spectrum of the spin labelled (maleimide spin label) cystein mutant 
of major coat protein of bacteriophage M13 at amino acid position 46 reconstituted in 
dimyristoylphosphatidylcholine lipid bilayer 32. 
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2.4 Conclusion 
To reduce the computational demand of the original multiple HEO approach, we developed 
and implemented a novel shaking operator and carried out an extensive testing on various 
spectra that represent a wide range of possible applications. With the modified optimization 
algorithm we succeeded to keep the quality of the characterization, thereby considerably 
reducing the computational time of the ESR spectrum analysis by a factor of 5-7. With this 
successful modification the application of advanced ESR spectra analysis 1 to complex 
biosystems, such as biological membranes and membrane proteins, becomes more feasible. 
Further numerical calculations on both synthetic and experimental data should prove the 
advantages of the implemented modifications and hopefully find new possibilities to 
improve and speed-up ESR spectra analysis. 
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Abstract 
The topology of the long N-terminal domain (approx. 100 amino acid residues) of the 
photosynthetic light-harvesting complex CP29 was studied using electron spin resonance 
(ESR). Wild-type protein containing a single cysteine at position 108 and nine single 
cysteine mutants were produced, allowing to label different parts of the domain with a 
nitroxide spin label. In all cases the apoproteins were either solubilized in detergent or they 
were reconstituted with their native pigments (holoproteins) in vitro. The spin label ESR 
spectra were analyzed in terms of a multi-component spectral simulation approach, based 
on hybrid evolutionary optimization and solution condensation. These results permit to 
trace the structural organization of the long N-terminal domain of CP29. Amino acid 
residues 97 and 108 are located in the transmembrane pigment-containing protein body of 
the protein. Positions 65, 81 and 90 are located in a flexible loop that is proposed to extend 
out of the protein from the stromal surface. This loop also contains a phosphorylation site at 
Thr81, suggesting that the flexibility of this loop might play a role in the regulatory 
mechanisms of the light-harvesting process. Positions 4, 33, 40, and 56 are found to be 
located in a relatively rigid environment, close to the transmembrane protein body. On the 
other hand position 15 is located in a flexible region, relatively far away from the 
transmembrane domain. 

3.1 Introduction 

Photosynthesis in green plants and algae occurs in chloroplasts. Their highly-folded 
thylakoid membranes provide a home for the multisubunit protein complexes Photosystems 
I and II (PSI, PSII), that work in concert (linked by a cytochrome b6f complex) to convert 
sunlight energy into chemical energy 1. The fourth major player is the ATP-synthase 
complex that uses the proton gradient across the thylakoid membrane, created by PSI/PSII, 
to convert ADP into ATP. PSI and PSII are supramolecular complexes composed of a core 
moiety, which contains all the cofactors of the electron transport chain and of an outer 
antenna system, the role of which is to collect light energy and to transfer it to the reaction 
centre where it can be used to drive charge separation. All antenna complexes of higher 
plants belong to the Lhc (Light-harvesting complex) multigenic family 2. In particular six 
different gene products (Lhcb1-6) compose the outer antenna system of PSII. The major 
antenna complex of PSII is light-harvesting complex II (LHCII, the product of the genes 
Lhcb1-3 3), harboring over 50% of the pigments and it is organized as trimers at the 
periphery of the PSII supramolecular complex 4. Three minor antenna complexes, CP29 
(Lhcb4), CP26 (Lhcb5) and CP24 (Lhcb6) are located in between the LHCII trimers and 
the core complex and they are present as monomers. Recently, it has been proposed that the 
minor antenna complexes provide the sites of non-photochemical quenching, a mechanism 
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that protects PSII against photoinhibition 5. In particular it has been shown that in CP29 a 
radical cation is formed on the zeaxanthin in the L2 site, which strongly interacts with 
Chl A5 6 leading to the harmless dissipation of excess excitation energy. 

The structure of LHCII has been resolved at 2.72 Å 7 showing three transmembrane 
helices, two amphipathic helices on the lumenal side of the membrane and the positions of 
14 chlorophyll and 4 xanthophyll molecules per monomeric subunit. Structural information 
on the minor antenna complexes CP24, CP26 and CP29 is still lacking, but sequence 
analysis 8 and site-selected mutagenesis have revealed that they share high structure 
similarity with LHCII, although they coordinate a smaller number of pigments 9,10.  

CP29 is the largest member of the Lhc family and it is characterized by a long N-
terminal domain (approx. 100 amino acid residues), which contains a phosphorylation site 11. 
Phosphorylation takes place, for instance, under cold stress and is accompanied by a structural 
change of the protein 12. It has been shown that there is a strong correlation between the 
presence of phosphorylated CP29 and the resistance of plants against cold stress, thus leading 
to the suggestion that the phosphorylation is involved in protective mechanisms 13. However, 
details are lacking both on the structure and the structural changes. 

CP29 belongs to the class of membrane proteins. In general, membrane proteins 
comprise almost one third of the total amount of proteins in an organism or cell. However, 
progress in determining their structures has been slow. Therefore, membrane proteins offer an 
enormous challenge in structural biology and there is an urgent need to develop and apply 
new biophysical methodologies that are able to generate detailed structural information. 
Among modern biophysical techniques, site-directed spin labeling electron spin resonance 
(SDSL-ESR) appears to show the highest potential to further develop the field 14.  

Recently, CP29 protein mutants reconstituted with plant pigments in detergent were 
selectively labeled at three positions in the N-terminal domain with a fluorescent dye 
TAMRA (6-carboxy-tetramethyl-rhodamine) and examined with picosecond fluorescence 
spectroscopy 15. The results indicated that the N-terminus is folded back on the 
hydrophobic part of the protein, and suggested the presence of some structural 
heterogeneity in the N-terminal part. 

The present paper focuses on the structure and dynamics of the N-terminal domain 
of CP29 in detergent systems with and without pigments. Site-directed mutagenesis was 
used to produce ten single-cysteine protein samples with cysteine positions equally 
distributed over the N-terminal domain. Following the approach of Stopar et al. 16, single-
cysteine protein samples were labeled with nitroxide spin labels. The ESR data allowed us 
to determine the free rotational space, local dynamics and polarity of the spin labeled sites 
that reflect the pigment-binding properties of CP29 and to arrive at a topological model for 
the N-terminal domain. 
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3.2 Materials and methods 

3.2.1 Construction and isolation of overexpressed CP29 apoprotein  

Lhcb4.1 cDNA of A. thaliana (from Arabidopsis Biological Resource Center DNA Stock 
Center) was subcloned into a pT7-7 expression vector. The construct contains the sequence 
of the mature CP29 protein with an additional methionine at the N-terminus and a 6 His-tag 
at the C-terminus. Mutations were introduced using the Stratagene Quick Change Site 
Directed Mutagenesis Kit. First, the natural occurring cysteine (position 108) was replaced 
by alanine. This mutant was also used to estimate the amount of nonspecific spin labeling. 
On this template, single cysteine residues were introduced in the N-terminal part at various 
positions resulting in the following mutants G4C, S15C, S33C, S40C, A56C, S65C, T81C, 
S90C and S97C. The constructs were checked by DNA-sequencing. The plasmids were 
amplified in the super competent Escherichia coli XL-1 Blue strain and the proteins 
overexpressed in the E. coli BL21 (DE3) strain. Inclusion bodies containing the CP29 
apoprotein mutants were isolated as reported in 17,18 and stored in the presence of 10 mM 
dithiothreitol at -20 ºC. 

3.2.2 Pigment isolation, labeling and reconstitution of CP29-pigment complexes 

Purified pigments were obtained from spinach. Concentrations of pigments were determined 
spectroscopically: chlorophylls as described by Porra 19 and carotenoids as described by 
Davies 20. Just before labeling, inclusion bodies containing CP29 apoprotein were freshly 
purified from dithiothreitol and dissociated in lithium dodecyl sulfate (LDS) reconstitution 
buffer (2% LDS, 12.5% sucrose, 20 mM Na2HPO4 pH 7.6). CP29 apoproteins were labeled at 
room temperature for 3 hours with a 5 times molar excess of the spin label MTS-SL, (1-Oxyl-
2,2,5,5-tetramethylpyrroline-3-methyl) methanethiosulfonate from TRC, Toronto, Canada). 
Excess spin label was removed using affinity chromatography on a His-Trap column. Prior to 
storage at -20 °C the excess of imidazole and NaCl from the elution buffer were removed by 
dialysis against LDS reconstitution buffer. Samples of CP29 apoprotein to be measured in β-
D-maltoside (DM) buffer (0.03 % W/V + 10 mM Na2HPO4, pH 7.6) were prepared by using 
the detergent substitution procedure 21 followed by affinity chromatography on a His-Trap 
column to bring the apoprotein in DM buffer. Reconstitution and purification of protein-
pigment complexes (holoproteins) were performed as reported in 22, but using a chlorophyll 
a/b ratio of 5.5. Solutions of the spin-labeled CP29 samples were washed and concentrated in 
sucrose-free DM buffer just before the ESR measurements. Integrity of the holoprotein 
samples was checked by fluorescence excitation and emission measurements, showing the 
complete absence of free chlorophylls and carotenoids in all preparations.  
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3.2.3 ESR measurements 

All washed and concentrated spin-labeled CP29 preparations in DM buffer (final protein 
concentration between 0.07 and 0.2 mM) were transferred to 50 μl capillaries up to 1 cm height 
and placed in a standard 4-mm quartz ESR tube. Spectra were measured on a X-band Bruker 
Elexsys E-500 ESR system equipped with a super-high-Q cavity ER 4122SHQE in combination 
with a SuperX X-Band Microwave Bridge type ER 049X. Temperature was controlled with a 
quartz variable-temperature Dewar insert. Spectra were recorded at 10 mT scan widths with a 
microwave power of 5 mW at 6 °C. To improve the signal-to-noise ratio, up to 100 scans were 
accumulated with a time constant of 20 ms, a modulation amplitude of 0.1 mT and a scan time 
of 82 s. Before analysis spectra were corrected for the background signal of the buffer. 

3.2.4 ESR spectral simulation, optimization and solution condensation 

The ESR spectra of spin-labeled CP29 samples were simulated with a multi-component 
model as described previously 16,23. The spectral parameters {ϑ, ϕ, τc, W, pA, prot} of each 
component of the simulated spectra were simultaneously optimized with a multi-run hybrid 
evolutionary algorithm 24,25. Multiple solutions, which were obtained from optimization, were 
then filtered and grouped into domains with a GHOST condensation approach 16,23,25,26.  

The simulation model for the ESR spectra employs a fast motional averaging 
approximation to describe the local motion of the spin label 25. The dynamics of the spin 
probe gives rise to a motion in a cone 27, which can be described with three parameters: a 
maximum opening cone angle ϑ, a cone asymmetry angle ϕ, and an effective correlation 
time τc. The magnetic interaction tensors g and A are linearly corrected with a polarity 
parameter pA. Furthermore, a proticity parameter prot is used that accounts for the effect of 
proton binding to the spin label on the g tensor 28. It was found that the relative error for 
parameter prot was quite large. Therefore this parameter will not be used in our further 
discussion 23. When calculating the convolution of the magnetic field distribution and the 
basic line shape, two line width parameters, τc and W, are applied. A Lorentzian line is used 
in the motional narrowing approximation with a single effective rotational correlation 
time τc 27,29. The additional broadening of the spectral line arising from nonmotional effects 
is described by a constant W. This parameter arises from unresolved hydrogen 
superhyperfine interactions and contributions from paramagnetic impurities (e.g., oxygen), 
in addition to external magnetic field inhomogeneities, field modulation effects, and 
intermolecular spin-spin interactions if present and applicable. 

To resolve coexisting motional patterns from the experimental ESR spectra, the 
simulated spectra were composed from four independent spectral components defined by 
four sets of spectral parameters {ϑ, ϕ, τc, W, pA, prot} and four relative contributions 
following a previous approach 23. Typically, 20 runs of the population-based hybrid 
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evolutionary optimization (HEO) were used to produce 8000 (400 in each of 20 runs) 
solutions (spectral parameters and the weights of four spectral components) 25,26. The 200 
best solutions were chosen (according to the quality of fit) and their four spectral 
components were separated into a pool of 800 parameter sets. Collected single spectral 
components are processed further with GHOST condensation, which filtered and then 
grouped the spectral components into domains 25,26. Each domain in a GHOST plot can be 
seen as a “motional pattern” of the spin label that is related to its local motional properties. 
Such motional patterns reflect the restrictions of the spin label arising from the local protein 
structure, i.e., local interactions between the spin label rotamers and neighboring amino 
acid side chains and the motional limitations imposed by the protein backbone. In addition, 
the motional patterns reflect different dynamical regimes of the spin probe, which may 
additionally include: a) dynamics inherited from the whole protein motion; b) protein 
backbone fluctuations 27. Also the spin label senses the accessibility of solvent molecules 
and adjacent acyl chain of the phospholipids in case it is in bilayer. 

Filtering of the multiple solutions was done according to the fit quality of a 
particular solution and according to the density of the solution in the parameter space. The 
group recognition was done with a slicing method based on domain detection at several 
density levels 30. Visual analysis of the resulting GHOST plots, which present a 
combination of two parameters (ϕ and ϑ, τc and ϑ, pA and ϑ), was used to revise the results 
of the automated group (motional patterns) recognition and to examine the distribution of 
the spectral characteristics within the groups. Candidate motional patterns were tested for 
their physical relevance by looking at the corresponding line shapes. Unusual line shapes 
resulting from abnormal combinations of parameters were omitted from further analysis. In 
this way the ESR experimental spectra are characterized in terms of multiple motional 
patterns, and the GHOST analysis provides the number of patterns, average parameters, and 
relative contribution of each pattern. 

3.3 Results 

3.3.1 CP29 reconstitution 

Together with the wild type CP29 (WT-C108) nine cysteine-spin labeled CP29 apoproteins 
(G4C/C108A, S15C/C108A, S33C/C108A, S40C/C108A, A56C/C108A, S65C/C108A, 
T81C/C108A, S90C/C108A, and S97C/C108A) were obtained and reconstituted with 
pigments in vitro. All pigment-protein complexes were obtained in their monomeric state as 
assessed by sucrose gradient ultracentrifugation. The absorption spectra of the holoprotein 
mutants are identical to that of the wild-type construct and resemble the spectrum of the 
native CP29 complex, similar as in previous studies 9,21,31. This indicates that the mutations 
do not influence the pigment binding. 
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3.3.2 ESR experiments 

The ESR spectra of the reconstituted holoprotein complexes and of the apoproteins in 
detergent solution are shown in Figure 1. 

 
Figure 1. ESR spectra of MTS-SL spin-labeled CP29 protein samples at label positions 4, 15, 33, 40, 
56, 65, 81, 90, 97 and 108 reconstituted in DM with (holoprotein, black line) and without 
(apoprotein, grey line) pigments. The total horizontal scan range is 10 mT. Spectral line heights are 
normalized to the same central line height (left peak). The simulated spectra are shown in red for 
holo- and blue for apoprotein samples. 

In all cases the spectra have a multi-component character. As can be seen, the 
absence of the pigments has only a small effect on the spectra corresponding to positions 
15, 65, 81 and 90 and for all these cases the ESR spectra show a strong sharp three-line 
component of mobile spin labels. In contrast, for positions 33, 40, 56, 97 and 108, there is a 
relatively large spectral difference between the holo- and apoproteins. At these positions the 
ESR spectrum has a typical immobile appearance, especially for the holoprotein in the 
presence of pigments. The ESR spectrum corresponding to position 4 shows a two-
component spectrum with a strong immobile contribution. Close inspection of the ESR 
spectra corresponding to positions 4 and 15 reveals that there is a small increase of 
immobile component for the apoprotein. 
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To decompose the multi-component ESR spectra, we used a multi-component model 
of asymmetric motional restriction 16,23 and optimized the fitted spectra employing a multi-
run multi-solution hybrid evolutionary method 25. The goodness of fit was chosen to be the 
reduced χ2 function: 
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i i
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where yexp and ysim are the experimental and simulated data, respectively, σ is the standard 
deviation of the experimental points, and N is the number of spectral points (in our case 
N = 1024). For all ten spin-labeled CP29 holo- and apoprotein samples the quality of the 
simulated ESR spectra is good (see Figure 1). For holoprotein spin labeled at positions 33, 
56, 81 and 97 and apoprotein spin labeled at positions 4, 56, 81 and 108, the reduced χ2 of 
the best fit solutions is between 1.6 and 3. For the other samples this is slightly higher, i.e., 
between 3 and 5. In general, χ2 values below 5 can be considered to be very good. 

The results from the simulations are summarized in so-called GHOST plots (such as 
a ϑ−ϕ GHOST shown for positions 65 and 108 in Figure 2). The GHOST methodology 
provides the motional patterns that characterize the spectrum, thus the GHOST plots 
provide the most significant and probable groups of solutions of spectral parameters. Each 
group corresponds to a particular motional pattern (e.g., mobile or immobile according to 
the rate of motion; restricted or unrestricted according to the extent of restrictions imposed 
by the local protein structure on free rotational space of the spin probe). The weight of the 
group represents the contribution of that particular component to the spectrum. For 
example, at position 65 (Figure 2) the rotational space of the component with 14% 
contribution is completely open (ϑ and ϕ around π/2), a component with a contribution of 
57% is half-closed (ϑ around π/4) and still symmetric (ϕ around π/2), and a component 
with a contribution of 16% is very closed (ϑ around π/6 and ϕ close to 0), as suggested by 
the distribution of the cone angles of the spin label ϑ and ϕ (both angles can vary between 0 
and π/2). On the other hand the rotational space for the spin label at position 108 of CP29 
pigment-protein complex is very restricted as suggested by the major component with a 
contribution of 51% (ϑ around π/6 and ϕ close to 0) (Figure 2). In most cases the motional 
patterns in the GHOST plots (as shown in Figure 2) are represented in the parameter space 
by concentrated groups of solutions. Contrary, in the case of spin-labeled apoprotein 
mutants 40 and 90, there appear continuous patterns, which reflect smooth transitions 
between the spectral parameters. This may indicate a transition between structural 
conformations, or could represent a distribution of a local structure around the mutated 
residue. The samples having spectra with a relatively low signal-to-noise ratio turned out to 
be somewhat more problematic in terms of group recognition. Also the ESR spectra of 
mutants at positions 15 and 90 were more difficult to fit, and after group recognition, many 
spectral components were found distributed in the parameter space. Thus after group 
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recognition the final solution appeared to contain several motional patterns with a low 
contribution (Figure 4). This means an additional complexity of the corresponding spectra 
and consequently of the spin label motion at positions 15 and 90 relative to other spin-
labeled positions. The four best-fitting spectral components in the simulated spectra 
(Figure 1) are presented in the GHOST plots with colored triangles (Figure 2). The size of a 
triangle is proportional to the contribution of the corresponding component in the spectrum. 

 
Figure 2. GHOST plot showing the optimized multiple solutions represented in a two-dimensional 
distribution of the angles ϑ and ϕ  of MTS-SL spin-labeled CP29 protein samples at positions 65 and 
108 reconstituted in DM with (top, holoprotein) and without (bottom, apoprotein) pigments. The 
components of each solution are represented with a point on the plot with a color, combined of red, 
green, and blue, which codes for the relative values of τc, W and pA in their definition intervals {0 - 3 
ns}, {0 - 0.4 mT}, and {0.8 - 1.2}, respectively. The closed black lines on the plot surround domains of 
the solutions grouped into motional patterns. The contribution of each pattern is shown in percents. 
Additionally, the four spectral components of the best fit solution are presented on the plot with red 
(top, holoprotein) and blue (bottom, apoprotein) triangles, while the area of each triangle is 
proportional to the relative contribution of the corresponding component in the simulated spectrum.  

For further analysis (i.e., a more convenient comparison of multiple data between 
different spin label positions along the protein), the angles ϑ and ϕ are combined in a single 
parameter, Ω, which is defined as 23:  
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This parameter measures the space angle, i.e., the surface of the cone left for local 
spin label wobbling (free rotational space) and is shown for all ten spin-labeled CP29 holo- 
(Figure 3A) and apoprotein samples (Figure 3B). High values of Ω (between 0.7 and 1) 
correspond to nearly unrestricted motional patterns of the spin label (i.e., mobile spectral 
components), whereas low values (between 0 and 0.25) imply very high restrictions (i.e., 
immobile spectral components). In addition to the free rotational space Ω, the simulations 
provide the effective rotational correlation time τc 29 and the polarity correction pA for the 
magnetic interaction tensors g and A of the spin label 16,28. These parameters are presented 
in Figs. 3A and B as well. To elucidate the effect of pigment removal on the ESR data, we 
carried out a comparison of the most important motional patterns (with a contribution of 
more than 25%), as shown in Figure 3C. Figure 3D compares the weighted averages of the 
motional patterns of the spin-labeled holo- and apoproteins. In general, it can be seen in 
Figure 3 that high values of the free rotational space Ω correspond to high values of the 
effective rotational correlation time τc. 

3.4 Discussion 

The central issue in our research is related to the following questions: 1) what is the 
conformation of the unusually 100-residues long N-terminal domain of CP29 protein 
(which is much longer than for all other members of the Lhc family); 2) where is this 
domain located with respect to the membrane-embedded transmembrane protein body, and 
3) what is the role of the pigments in determining the structure and dynamics of the N-
terminal domain? To address these questions, we compared CP29 holo- and apoprotein by 
using ESR of spin labeled cysteine positions distributed over the N-terminal domain. In this 
respect, it should be noted that after reconstitution in the detergent DM the pigments 
provide a correctly folded transmembrane body domain of the protein, which can be 
considered as the native state of the protein 21,32,33. The detergent that is used for the 
reconstitution of CP29 protein with the pigments provides a good membrane-mimicking 
environment for CP29: DM it is not a very strong denaturing detergent providing a 
relatively compact protein-detergent complex 33. If the pigments are absent, the structure of 
CP29 protein is more loose and it may be partly unfolded 33. For LHCII in DM the 
spectroscopic properties are similar to those observed in the intact thylakoid membrane 34. 
Since LHCII and CP29 have a strong sequence homology in the transmembrane protein 
body 9, this indicates that the structure of CP29 in DM may also be similar to the in vivo 
structure. Thus, the holo- and apo-states of CP29 provide a good starting point for a 
comparative spin-label ESR study addressing the questions given above. 
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From a qualitative analysis of the ESR spectra (Figure 1) it follows that positions 33, 
40, 56, 97 and 108 are located in protein domains that are strongly affected by pigment 
reconstitution of the CP29 complex. Positions 97 and 108 are located in the transmembrane 
protein body that contains the pigments 11. It is evident that these positions will be affected 
by the pigment reconstitution, bringing the protein from a relatively loose and partly 
unfolded structure without pigments into a native folded structure with pigments. 
Interestingly, positions 33, 40, and 56 follow the same trend. This indicates that this protein 
domain is located adjacent to the transmembrane protein body. Positions 65, 81 and 90 
show a sharp mobile component indicating a relatively high degree of motion. Moreover, 
these positions are not affected by pigment reconstitution, suggesting that they are located 
far from the transmembrane region in a loop extending out from the stromal surface of the 
protein 11. Also positions 4 and 15 at the N-terminal end are just slightly affected by 
pigment reconstitution. Position 4 displays a clear two-component characteristics of a sharp 
mobile and a broad immobile component. Contrary, position 15 can be characterized only 
by a sharp mobile component and the broad immobile component is almost absent. This 
indicates that the spin label at position 4 is more restricted in its motion than the one at 
position 15. This finding is remarkable, since position 4 is close to the N-terminal end, 
where one would expect a large degree of motion due to fraying of the terminal amino acid 
residues. The ESR line shapes at positions 15, 65, 81 and 90 are roughly similar to each 
other.  

To further analyze the multi-component ESR spectra, we carried out a spectral 
decomposition based on a multi-component model of asymmetric motional restriction 16,23, 
followed by a multi-run multi-solution hybrid evolutionary approach 25. The multi-
component model turned out to be robust enough to cover many different combinations of 
coexisting local motional patterns. The multi-solution feature of the simulations provides 
the capability of determining the actual number of the spectral components related to spin 
probe motional patterns, the spectral parameters and the contribution of each component, 
without setting the number of the spectral components in advance. Due to practical 
considerations, we limited the maximum number of spectral components to four.  

The main general advantages of our multiple-solution algorithm are: 1) 
determination of multiple components (motional patterns), since a single solution 
characterization may not be capable of revealing all components; 2) revealing a transition 
between spectral parameters, which could be very useful in the case of multiple protein 
conformations; 3) detecting defects in the line shape. Concerning line shape defects, a 
spectral component may arise in the optimization to simulate a particular feature of the line 
shape to improve the fit. In such a case checking of the parameter space via GHOST plots 
(such as shown in Figure 2) in combination with the line shape analysis helps to clarify the 
characterization results and to remove meaningless components, if needed 23,25. Also, the 
appearance of low-quality fits and an unusual distribution of the spectral parameters in the 
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parameter space may indicate artifacts in the spectra. In most cases we found high-quality 
fit solutions and well-defined two-dimensional GHOST patterns, indicating that the ESR 
spectra do not have artifacts and that the group recognition was carried out in a correct way. 

As can been seen in Figs. 3A and B, the GHOST analysis results in a number of 
motional patterns. 
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Figure 3. ESR data of MTS-SL spin-labeled CP29 protein samples reconstituted in DM with 
(A, holoprotein, red circles) and without (B, apoprotein, blue circles) pigments. Less pronounced 
motional patterns with a contribution below 25% are represented by grey circles. The horizontal axis 
indicates the spin label position, the vertical axes give Ω, τc and pA. High values of Ω (between 0.7 
and 1) correspond to (nearly) unrestricted motional patterns of the spin label (i.e., mobile spectral 
components), whereas low values (between 0 and 0.25) imply very high restrictions (i.e., immobile 
spectral components). (C) Comparison of the most important motional patterns (with a contribution 
of more than 25%) of spin-labeled CP29 protein samples with (holoprotein, red circles) and without 
pigments (apoprotein, blue circles). (D) Weighted averages of the motional patterns of spin-labeled 
CP29 protein samples with (holoprotein, red circles) and without pigments (apoprotein, blue circles). 
The area of the circles in A, B, and C is proportional to the relative contribution of the motional 
patterns to the multiple solution. 
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There are several factors that can contribute to a multi-component character: 1) 
differences in local structure around the spin label at the binding site; 2) various rotamers of 
the side chain of the spin label and interactions between certain rotamers with the local 
environment; 3) sample heterogeneity on the level of the micelles in which CP29 protein is 
incorporated, for example arising from differences in protein-to-detergent ratios and 
micellar sizes; and 4) nonspecific labeling. To estimate the amount of nonspecific labeling, 
we produced a mutant of wild-type CP29, in which the cysteine at position 108 is replaced 
by an alanine. Spin labeling of this mutant shows that the amount of nonspecific labeling is 
less than 5%. As can be seen in Figure 3A even by discarding motional patterns with small 
contributions (less than 10-20%), there is more than one component left in a majority of the 
cases. 

Because the free rotational space Ω is very sensitive to the local environment of the 
spin label side chain (adjacent protein domains and/or solvent molecules), there are two 
different ways to handle multiple motional patterns: 

1) Assign the motional patterns to one or two protein conformations and further use 
this result to interpret the effect of pigment binding on the conformation of the protein and 
locations of the pigments in the protein. In this case, we select the components with the 
highest intensity (above 25%) in the GHOST analysis (Figure 3C). The other motional 
patterns are then assigned to sample heterogeneities and minor structural components. Two 
or more components may manifest similarities, consistent changes of the model parameters 
and thus can be considered to be parts of a single major motional pattern. Such a pattern 
(prolonged in parameter space) with an evident transition of the model parameters then 
most likely represents the transition between conformational states. This enables an 
analysis of the results in terms of different protein conformations. 

2) As we will concentrate on the effect of pigment binding of CP29 protein, we do 
not need to assign the various motional patterns, but we can focus on the differences in the 
results with and without pigments. Therefore another approach is to take the weighted 
average of all patterns (Figure 3D). When comparing the averaged data for the protein with 
and without pigment, the difference will be dominated by the effect of pigment binding.  

In comparing the Ω values for the holo- and apoprotein in Figure 3A and B, it can be 
seen that for almost all spin label positions the range of values increases from low values to 
higher values. This is especially true for the motional patterns with Ω ≈ 0 in Figure 3A, in 
which the spin label motion is highly restricted. These motional patterns are almost gone in 
Figure 3B. In turn, in Figure 3B a larger range of motional patterns is observed for Ω values 
from 0.6 to 1.0, indicating local conformations with less restricted spin label motion. Since 
this effect is found throughout the whole N-terminal domain, it is assigned to partly 
unfolding of the protein on going from the holo- to the apo-state. As can be seen in the 
intensity-filtered data in Figure 3C, at several positions (4, 15, 40, 56 and 108) two values 
for Ω, τc and pA can be identified. These positions appear to be spread over the entire 
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sequence of the N-terminal domain of CP29 protein. This effect is also related to a 
relatively loose and partly unfolded state of the apoprotein, as discussed above. However, 
no consistent pattern exists between the various values for Ω, complicating a detailed 
analysis of the data in terms of different conformations of the N-terminal protein domain. 
Although there appears to be a wealth of information in Figs. 3A and B, a full assignment 
of motional patterns is not possible without additional knowledge about the N-terminal 
domain and without having more amino acid residues systematically replaced in a certain 
protein domain. 

This difficulty does not exist by taking the weighted average of all motional patterns 
(Figure 3D). These data represent the general trend, but details about the various 
components are lost. In Figure 3D, apart from information about the average free rotational 
space Ω, also information is available about the average effective rotational correlation time 
τc and local polarity pA of the spin label attached to the protein. In Figure 3D it can be seen 
that in all cases (except for positions 4 and 15) the values for Ω for the pigment-free CP29 
protein are above the values for the reconstituted protein. This indicates that the N-terminal 
part of the pigment-free apoprotein has a relatively loose and flexible structure in which the 
available space for the spin label is expected to be less restricted. Based on the polarity 
effect shown in Figure 3D (a high value for pA reflects an increased local polarity 25), we 
can conclude that overall the spin-labeled sites in the apoprotein are more in an apolar 
environment as compared to the holoprotein. This could reflect an enhanced exposure to the 
acyl chains of the solubilizing detergent molecules, probably due to the relatively loose and 
partly unfolded state of the apoprotein. 

The trend in the free rotational space Ω as shown in Figure 3D closely follows the 
qualitative interpretation of the ESR spectra in Figure 1, indicating that the “loop” positions 
65, 81 and 90 are only slightly affected by the pigment binding to CP29. Also the observed 
differences between the holo- and apo-state of the protein on positions 33, 40, 56, 97 and 
108 are consistent with the analysis of Figure 1. In the N-terminal domain, position 4 is 
slightly affected by the absence of pigment, however, its value for Ω is similar to the values 
for the positions in the more structured domains. This is remarkable for an N-terminal end 
position and could indicate a local structure that limits the free rotational space of the spin 
label. Alternatively, this N-terminus could interact with the transmembrane protein body, 
which is in agreement with recent fluorescence experiments with the fluorescent dye 
TAMRA (6-carboxy-tetramethyl-rhodamine) covalently attached to a cysteine at position 4 
15. In contrast, position 15 does not show a strong effect to pigment removal, but its value 
for Ω is at a high level, indicating rather unrestricted spin label motion at a location 
probably relatively far from the transmembrane protein body. 
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3.4.1 Summarizing model 

CP29 has a strong sequential homology with LHCII, the major difference being an N-
terminal insert from amino acid residue 56 to 98 9. Also light-spectroscopic experiments 
have revealed a high degree of structural and functional similarity between CP29 and 
LHCII and demonstrate an unequivocally high similarity for the transmembrane protein 
bodies 22,35-38. Because of this strong sequence homology and spectroscopic similarities, we 
took the crystal structure of LHCII from spinach 7 as a starting point for constructing a 
model for CP29 (Figure 4). In this figure, the extra N-terminal insert is shown as a red loop 
extruding from the main protein body. The amino acid residues 97 and 108 that were used 
for spin labeling, are located in the transmembrane protein body of the protein. Position 108 
is situated on the putative transmembrane helix B of the protein, close to the center plane of 
the protein; position 97 is at the end of this helix, close to the stromal surface of the protein. 
These locations are consistent with the relatively strong difference between holo- and 
apoprotein and the relatively low values of Ω that are indicative for a restricted spin label 
motion (Figure 3). Positions 65, 81 and 90 are located in the extra N-terminal loop that is 
proposed to extend out of the protein in the stromal space, because for these sites the label 
has a large degree of freedom and is not influenced by pigment binding. This loop also 
contains a phosphorylation site at Thr81. This finding suggests that the flexibility of this 
loop could play a role in presumed regulatory functions of the phosphorylation. 

Positions 33, 40, and 56 show far less rotational freedom and moreover, the 
corresponding ESR spectra are substantially affected by pigment reconstitution, indicating 
that the domain in which they are located should be close to the transmembrane protein 
body. Their relatively low values for Ω are similar to the values found for positions 97 and 
108 (Figure 3). This observation is consistent with the crystal structure of LHCII, in which 
these positions are located in a folded protein domain at the stromal side of the protein 7 
(Figure 4). The next labeled position towards the N-terminal end, position 15, shows a high 
value for Ω suggesting rather unrestricted spin label motion. This indicates that this protein 
domain is in a flexible state. This is in agreement with the finding that the structure of the 
N-terminal amino acid residues 1 to 14 is not resolved in the crystal structure of LHCII. 
Finally, position 4 at the N-terminal end displays clear two-component characteristics of a 
broad immobile component in combination with a sharp mobile one (Figure 1, 3C). It is 
slightly affected by the absence of pigments, however, its value for Ω (Figure 3D) is similar 
to the values for the positions in the more motionally restricted domains (i.e., position 97). 
This suggests that the N-terminus interacts with the transmembrane protein body probably 
by folding back to it, however, without being strongly affected by the holo- or apo-state of 
the protein. This topology is in agreement with recent fluorescence experiments with the 
fluorescent dye TAMRA (6-carboxy-tetramethyl-rhodamine) covalently attached to a 
cysteine at position 4 that indicate that in about 80% of the cases the N-terminus is folded 
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back on the hydrophobic core 15. Next to position 4 there are two phenylalanine residues. It 
could be hypothesized that this domain interacts with the hydrophobic amino acid residues 
that can be found in a groove on the stromal side of the transmembrane protein body. 

 
Figure 4. Schematic structural model of CP29 based on the crystal structure of LHCII from spinach 7 
(PDB ID: 1RWT). The main helical structures (A-E) of the transmembrane protein body are shown in 
light blue. The extra N-terminal insert of CP29 (as compared to LHCII) is shown as a red loop 
extruding from the main transmembrane protein body. The N-terminus from amino acid residue 1-14 
is indicated in grey, as this part of the structure is not resolved in the crystal structure of LHCII. The 
numbers refer to the labeled positions (black dots). 
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Until so far, we have limited ourselves to analyze the ESR spectra of singly spin-
labeled CP29 protein mutants. The main difficulty that we encountered was the limited 
number of available single-cysteine mutants, but this problem can be tackled by a high-
throughput approach. In addition, a double-labeling approach can be applied that provides 
distances between spin labels placed in various domains of the protein, in a similar way as 
has been carried out for the major light-harvesting chlorophyll a/b protein (LHCIIb) 39. 
Therefore, site-directed spin labeling ESR spectroscopy is an attractive and powerful way 
to study the conformation and topology of the protein domains in CP29. 
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Abstract 

Site-directed spin-labeling electron spin resonance (SDSL-ESR) is a promising tool for 
membrane protein structure determination. Here we propose a novel way to translate the 
local structural constraints gained by SDSL-ESR data into a low-resolution structure of a 
protein by simulating the restrictions of the local conformational spaces of the spin label 
attached at different protein sites along the primary structure of the membrane-embedded 
protein. We test the sensitivity of this approach for membrane-embedded M13 major coat 
protein decorated with a limited number of strategically placed spin labels employing high-
throughput site-directed mutagenesis. We find a reasonably good agreement of the 
simulated and the experimental data taking a protein conformation close to the one 
determined by fluorescence resonance energy transfer analysis (Nazarov et al., Biophys. J. 
92 (2007) 1296-1305). 

4.1 Introduction 

To identify the biological functions of proteins, it is imperative to know their three-
dimensional structure. In this context, the least understood class of proteins are the integral 
membrane proteins 1,2. Although they represent 30-40% of all expressed sequences, they 
amount to less than 1% of proteins of known structure 3. Thus membrane proteins remain 
an enormous challenge in structural biology. 

The progress of high-resolution structural studies of membrane proteins using the 
two common techniques, NMR and X-ray diffraction, has been limited because both 
approaches are restricted by technical and practical difficulties 4. As a result, there is an 
urgent need for new biophysical methodologies that can provide detailed structural 
information. Among the more modern biophysical techniques, site-directed spin-labeling 
electron spin resonance (SDSL-ESR) appears to show a high potential to further advance 
the field 5-10. 

The basis of this technique is high-throughput site-directed mutagenesis to introduce 
unique cysteine residues at desired locations in the protein. As site-directed mutagenesis is 
becoming an increasingly powerful tool in protein preparation, the usefulness of SDSL-
ESR in membrane protein studies grows tremendously 7. An additional advantage is that the 
membrane proteins can be examined in their native membrane environment, such as 
reconstituted lipid bilayer systems under their physiological conditions. 

Our objective is to present the basic ideas of a new method tailored to transfer the 
SDSL-ESR data into structural information. To demonstrate the power of our analysis, we 
use the M13 major coat protein, a small reference membrane protein, and we decorate it 
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with a limited number of strategically placed spin labels. We extract the experimental free 
rotational space of the spin labels attached to the protein as published previously 11-13. Here 
we develop a molecular model to describe the conformations of the protein in a lipid 
environment in terms of the available free rotational space for the spin label, showing that 
our method provides a new advance for spin-label ESR spectroscopy in the determination 
of protein structures. 

4.2 Methodology 

For a membrane-embedded protein, the conformational space of a spin-labeled side chain is 
determined by three main factors: i) the local rotations of the spin-label side chain attached to 
the protein backbone, ii) the restrictions of the rotamers by the backbone and side chains of 
the neighboring amino acid residues, and iii) the restrictions imposed by the surrounding 
lipids. These effects are illustrated in Figure 1. In our conformational modeling, it is assumed 
that at room temperature the backbone motion is slow on the ESR time scale and significantly 
slower than the motion of the side chains 14. Thus the protein fold on a timescale beyond 
several nanoseconds is defined by series of pairs of dihedral angles ϕ and ψ. Possible dihedral 
angle pairs are restricted due to steric clashes of the backbone atoms by taking into account 
the minimal interatomic distances (van der Waals distances, contact distances) 15,16. The bond 
lengths and angles are fixed to the values reported in the literature 17,18, as there is no need to 
resolve the individual conformation at the atomistic resolution. Instead, we want to detect the 
shape of the restricted conformational space that is experimentally measured by ESR. For 
each amino acid position including the spin-labeled cysteine side chain, the full 
conformational space of a side chain is generated by discrete rotations around the single 
bonds (Figures 1A and B). The torsion potentials are modeled by a discrete set of 
equiprobable but not equidistant rotational states, such that their density increases with the 
depth of the torsion potential at a given angle.  

The statistical weight pi of a certain conformation of spin label i is given by: 
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where the product in the central factor runs over all neighboring amino acid residues that 
share the space with the conformations of the spin label. 

The first factor in Eq. (1) indicates that the conformations of the spin-labeled 
cysteine side chain, which overlap with the backbone are completely rejected (Figures 1C 
and D) as the motion of the backbone is much slower than the motion of the side chains. 
However, the overlap with the neighboring amino acid side chains (Figures 1E and F) is 
assumed to be “soft” rather than “hard”, as the wobbling of the side chains is fast on the 
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ESR time scale. This is taken into account by the second factor in Eq. (1), which describes 
the reduction of the statistical weight by the ratio of the number of overlapping 
conformations and the number of all possible conformations of the neighboring side chains 
that are allowed by the backbone overlap check.  

 
Figure 1. Schematic illustration of the conformational space of the spin-label side chain for 
membrane-embedded 3-maleimido proxyl spin-labeled M13 coat protein. For simplicity, the protein 
is assumed to be in a perfect α-helical conformation and embedded in a bilayer of 1,2-dierucoyl-sn-
glycero-3-phosphocholine between amino acid position 9 and 46; the spin label is attached to a 
cysteine residue at position 25. A. The spin label attached to a cysteine residue has four free rotations 
(χ1, χ2, χ3, χ4) around the four single bonds. B. Unrestricted spin label conformational space (shown 
in red) resulting from the free rotations of the side chain around the four single bonds. C. Steric 
overlap of the spin label with the protein backbone reduces the set of possible conformations. D. The 
available spin label conformational space after steric overlap with the protein backbone (forbidden 
conformations are shown in yellow). E. The wobbling spin label shares space with the wobbling side 
chains of the neighboring amino acid residues (indicated in orange). F. The available spin label 
conformational space after steric overlap with both the backbone and the side chains of the 
neighboring amino acid residues. The soft interaction with the neighboring amino acids is indicated 
by a continuous yellow-orange-red color scale (see inset). G. As the lipids tend to orient the amino 
acid side chains, conformations that are perpendicular to the membrane normal are highly restricted, 
which further reduces the set of allowed spin label conformations. H. The final available spin label 
conformational space subject to all three types of restrictions. 

Finally, the statistical weight of each conformation of a side chain of the spin label is 
also decreased by restrictions due to adjacent lipids. The aligning effect of the lipids is 
parameterized by the angle ϑ between the membrane normal and the direction of the side 
chain of a particular conformation (which is defined as the direction from the Cβ to the 
oxygen atom of the nitroxide) and in a first approximation described by (1 – sin ϑ) 
(Figures 1G and H). This is provided by the third factor in Eq. (1). This factor is a 
simplification, based on the following requirements: (1) there are no restrictions in case of a 
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parallel orientation with respect to the lipids; (2) as soon as there is a non-zero angle, there 
should be a non-zero first derivative effect; (3) at a direction perpendicular to the lipids, the 
restriction should be strongest; (4) the derivative of this perpendicular effect should be zero 
again: there is not a very large difference whether lipid molecules are perfectly or nearly 
perpendicular to the side chains. The most simple and effective function that meets those 
criteria is the (1 – sin ϑ) function. Since the side chain of the 3-maleimido proxyl spin 
label, which is used in the ESR experiments, is twice as large as compared to amino acid 
side chains, the aligning effect of the lipids on the other amino acid side chains can be 
ignored. Based on similar arguments we did not take into account the restrictive effects of 
amino acid side chains on one another. 

Thus, the conformational space of a spin label at a specific site on a membrane-
embedded protein will be sensitive to its local environment. For membrane-embedded M13 
coat protein, the location of the protein relative to the lipid bilayer is defined by locking the 
positions of the amino acids that were experimentally determined to be at water-lipid 
interface 19,20. Note that this kind of description is proposed to describe the time-averaged 
SDSL-ESR experimental data and cannot be compared to the much more time-consuming 
molecular dynamics approach, which on the other hand would actually resolve the time 
evolution of the conformations.  

Recently we have introduced a method of analysis of ESR spectra of site-directed 
labeled proteins, which provides information about the conformational space of the spin-
labeled sites 11-13. The conformational space of a spin label is quantified by the normalized 
free rotational space Ω, which measures the effective solid angle of the cone left for spin 
label wobbling. This parameter can also be deduced from molecular modeling of the 
restriction in the rotational space of the side chains (Figure 1), by interpreting the results of 
the modeling in terms of a cone model 12,13. For this, we calculate the average direction of 
the nitroxide N-O bonds using the statistical weights of the conformations. The averages 
are converted into two cone angles ϑ0 and ϕ0 that characterize the anisotropy of the 
rotational space. From the cone angles we finally compute the simulated normalized free 
rotational space Ω as follows: 

 
( )

0 0
22

ϑ φ
Ω

π
= , (2) 

which can then be compared to the experimental values of Ω 12.  
In summary, the free rotational space of a spin label is an attractive parameter to 

consider for protein structure analysis, as it will be affected by its local environment as given 
by the primary sequence, fold of the protein backbone, adjacent protein domains in a tertiary 
protein structure and, for membrane proteins, the phospholipids in which the protein is 
embedded. All computer models were realized as Delphi classes using the Borland Delphi 6.0 
environment. The Pascal classes and the software are available from the authors upon request. 
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4.3 Results 

The protein modeling was tested by comparing the simulated free rotational space of a 
membrane-bound M13 major coat protein to recently published experimental data 12 
(Figure 2, red triangles). For this protein, consisting of 50 amino acid residues, 27 single 
cysteine mutants were available. They span the whole primary sequence of the protein 
and they cover almost the complete range of values of the free rotational space Ω of the 
3-maleimido proxyl spin label for the protein reconstituted in phospholipid bilayers 
consisting of 1,2-dierucoyl-sn-glycero-3-phosphocholine 11,20. 

The experimental free rotational space Ω was compared with the value of Ω obtained 
from the simulation of the restrictions of the side chain rotational spaces (Figure 2). For 
simplicity, we assumed a membrane-embedment of the protein based on a recently 
published model, using an α-helical protein with a tilt angle of 18º with respect to the 
membrane normal and with membrane crossing points at positions 9 and 47 19,21,22. To 
analyze the effect of protein conformation and membrane-embedment on the simulated free 
rotational space Ω, we generated a number of 5000 different helical structures of the protein 
with dihedral angles ϕ and ψ uniformly distributed around the values for an α-helix: 
-57±30º and -47±30º, respectively. The Ω values related to the original α-helical protein 
model (ϕ = -57º and ψ = -47º) are indicated with white triangles in Figure 2. The observed 
variation in Ω values represents the effect of the various amino acid residues in the primary 
sequence of the protein. In one set of simulations, we left out the lipid effect in Eq. (1), 
showing the variation of Ω for a ‘free’ protein (Figure 2A). At all spin label positions along 
the primary sequence of the protein the simulated Ω values were summarized into 
frequency histograms (see the cyan-blue histograms of the relative frequency of a given 
value of Ω in Figure 2). As can be seen, the calculated restrictions from the simulated 
helical structures produce a wide range of Ω values that nicely cover the experimental data. 
In a second simulation approach, the effect of the lipids was included. In this case, there is a 
reasonably good agreement between the SDSL-ESR experimental data and the simulated 
data for all spin label positions (Figure 2B). The deviating positions 25-29 most likely 
indicate that the simulated structure did not produce locally a secondary structure motif that 
would sufficiently restrict the conformational space of the spin label. We will address this 
problem by introducing an optimization procedure in our calculation, which would tune the 
backbone dihedral angles and in fact eventually would produce an optimized ensemble of 
best-fitting structures. 
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Figure 2. Sensitivity of the free rotational space to the primary sequence and variations of the protein 
secondary structure and the effect of the lipids for membrane-embedded spin-labeled M13 coat 
protein. The histograms of the relative frequency of a given value of Ω (color-coded by continuous 
shades of blue, such that cyan is the lowest frequency and dark blue is the highest frequency within 
the set of 5000 modeled near helical structures; see text) at an amino acid position along the primary 
sequence are plotted both for the ‘free’ protein (A) and for the protein in a lipid environment (B). The 
red triangles correspond to the experimental values of Ω. The white triangles indicate the Ω values 
related to the original α-helical protein model (ϕ = -57º and ψ = -47º) as defined in 19,21,22. 

 

4.4 Conclusion 

The key factor to the efficiency of our computational approach is the adjusted spatial and 
temporal resolution of the molecular modeling guided by the characteristic scales of the 
spin-label ESR experiments. The ESR experiment is insensitive to the exact atomic 
coordinates, but it enables us to track the rotational conformations of the amino acid side 
chains. With this in view, the simulation algorithm is designed to optimize its runtime 
without compromising the level of detail of the analysis. Since ESR spectroscopy is very 
sensitive to the available space of the fast rotational motion of the spin label attached to the 
protein, the rotational conformational space of the side chain can be taken as the most 
strategic unit in our protein modeling. The proposed search of the conformational space for 
each spin-labeled protein mutant requires a new approach in the modeling strategy as the 
standard modeling techniques and molecular dynamics simulations are not ideally suited 
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for such an ESR data analysis and consequently are not realistically applicable within the 
computer time frames possible. 

The next step will be to set up an optimization algorithm that will enable to find the 
best possible structures of the protein based on the Ω data. In this respect, the backbone 
dihedral angles will be continuously changed and the local restrictions will be recalculated, 
thereby optimizing the secondary structure of the protein. The goodness of fit to the 
experimental data will guide the optimization procedure through the search space towards 
more favorite structures. At the end of the optimization, more than one structure can 
produce equally good fits to the experimental Ω data, indicating a set of allowed global 
protein conformations. Such a method is comparable to the distance geometry approach 
employed in two-dimensional solution NMR spectroscopy that also results in a family of 
structures 23. Based on our experience with evolutionary optimization methods 24,25, the 
estimated time frame for the structure optimization for a protein of size of 150 amino acid 
residues and 50 different single cysteine mutants will be about four weeks using twenty 4-
GFLOP processors, which makes this approach highly competitive compared to other high-
resolution methodologies. 

As compared to well-established ESR tools of structure determination, such as 
accessibilities and distance constraints, our method provides an alternative approach. Our 
method has the advantage of providing direct information about the local secondary structure 
at physiological temperatures (i.e., room temperature) with singly labeled protein samples, 
without changing the sample conditions. In the case of accessibility experiments relaxation 
agents, such as Ni2+ ions or oxygen, need to be added to the sample. To determine distance 
constraints, two spin labels need to be engineered at the protein and for spin echo ESR 
experiments the sample has to be cooled to a low temperature (around 50 K) 7. 

Acknowledgements 

This work was supported in part by contract no. QLG-CT-2000-01801 of the European 
Commission (MIVase – New Therapeutic Approaches to Osteoporosis: targeting the 
osteoclast V-ATPase) as well as by the Slovenian Research Agency (programs P1-0060 and 
P1-0055 and project J1-6581). 



Chapter 4 
 

 
 

65 

References 

1 Arora, A. & Tamm, L.K. Curr. Opin. Struct. Biol. 11, 540 (2001). 
2 Lacapere, J.-J., Pebay-Peyroula, E., Neumann, J.-M., & Etchebest, C. Trends 

Biochem. Sci. 32, 259 (2007). 
3 White, S., Membrane proteins of known 3D structure, Available at 

http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html, (2009). 
4 Torres, J., Stevens, T.J., & Samso, M. Trends Biochem. Sci. 28, 137 (2003). 
5 Hubbell, W.L., Cafiso, D.S., & Altenbach, C. Nat. Struct. Biol. 7, 735 (2000). 
6 Columbus, L. & Hubbell, W.L. Trends Biochem. Sci. 27, 288 (2002). 
7 Hemminga, M.A. & Berliner, L.J., ESR spectroscopy in membrane biophysics. 

(Springer, New York, 2007). 
8 Beier, C. & Steinhoff, H.-J. Biophys. J. 91, 2647 (2006). 
9 Budil, D.E., Sale, K.L., Khairy, K.A., & Fajer, P.G. 110, 3703 (2006). 
10 LaConte, L.E., Voelz, V., Nelson, W., Enz, M., & Thomas, D.D. Biophys. J. 83, 

1854 (2002). 
11 Stopar, D., Štrancar, J., Spruijt, R.B., & Hemminga, M.A. J. Chem. Inf. Mod. 45, 

1621 (2005). 
12 Stopar, D., Štrancar, J., Spruijt, R.B., & Hemminga, M.A. Biophys. J. 91, 3341 (2006). 
13 Štrancar, J. et al. J. Chem. Inf. Mod. 45, 394 (2005). 
14 Karplus, M. & McCammon, J.A. CRC Crit. Rev. Biochem. 9, 293 (1981). 
15 Ho, B.K. & Brasseur, R. BMC Struct. Biol. 5, 14 (2005). 
16 Ho, B.K., Thomas, A., & Brasseur, R. Protein Sci. 12, 2508 (2003). 
17 Word, J.M. et al. J. Mol. Biol. 285, 1711 (1999). 
18 Xiang, Z. & Honig, B. J. Mol. Biol. 311, 421 (2001). 
19 Koehorst, R.B.M., Spruijt, R.B., Vergeldt, F.J., & Hemminga, M.A. Biophys. J. 87, 

1445 (2004). 
20 Stopar, D., Spruijt, R.B., & Hemminga, M.A. Chem. Phys. Lipids 141, 83 (2006). 
21 Nazarov, P.V., Koehorst, R.B.M., Vos, W.L., Apanasovich, V.V., & Hemminga, 

M.A. Biophys. J. 91, 454 (2006). 
22 Nazarov, P.V., Koehorst, R.B.M., Vos, W.L., Apanasovich, V.V., & Hemminga, 

M.A. Biophys. J. 92, 1296 (2007). 
23 Bax, A. Annu. Rev. Biochem. 58, 223 (1989). 
24 Filipič, B. & Štrancar, J., 2003. 
25 Kavalenka, A.A., Filipič, B., Hemminga, M.A., & Štrancar, J. J. Chem. Inf. Mod. 45, 

1628 (2005). 
 



 



 
 
 
 
 
 
 

Chapter 5 
 
 

Optimization of membrane protein 
structure based on SDSL-ESR 
constraints and conformational space 
modeling 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

based on: 
Kavalenka, A., M. A. Hemminga, and J. Štrancar, submitted. Optimization of membrane 
protein structure based on SDSL-ESR constraints and conformational space modeling. 



Optimization of membrane protein structure based on SDSL-ESR constraints and 
conformational space modelling 
 

 
 
68

Abstract 
The problem of structure determination of membrane proteins is addressed with a new 
combination of site-directed spin labeling (SDSL) electron spin resonance (ESR) 
spectroscopy and structure modeling of a membrane-embedded protein. A structural model 
is developed to simulate the free rotational space of a spin label attached to a membrane 
protein, taking into account the restricting effect of the protein backbone, amino acid side 
chains and lipid environment. To validate our model, we compared the simulation data of 
the conformational space of 3-maleimido proxyl spin label with experimental data obtained 
from SDSL-ESR spectra of 27 mutants of M13 coat protein reconstituted in phospholipid 
bilayers. By using an optimization algorithm we optimized the parameters of the protein-
lipid model by improving the fit of simulation data to experimental conformational space 
data. The outcome of the optimization is a family of best-fit structures of membrane-
embedded M13 protein, which not only agree with the available SDSL-ESR data, but also 
are consistent with a recent model based on site-directed fluorescence labeling. 

5.1 Introduction 

One of the most challenging fields of structural biology and structural proteomics is the 
structure determination of membrane proteins 1,2. Although one third of all proteins are 
membrane proteins, less than 1% of the known protein structures correspond to membrane 
proteins 3. Difficulties in the application of standard high-resolution methods for three-
dimensional protein structure determination, i.e., X-ray crystallography and nuclear 
magnetic resonance (NMR) spectroscopy, have stimulated the development of alternative 
approaches. One of such techniques is site-directed spin labeling (SDSL) electron spin 
resonance (ESR). This technique provides both a structural and dynamical characterization 
of the local conformations of a membrane protein in its native environment, and therefore 
evolves into a very useful method for the structure analysis of membrane proteins 4-8. 
However, the problem of transforming local structural information from different labeled 
protein sites into a global protein structure remained unsolved. 

In the present work a structural model is developed to simulate the free rotational 
space of a membrane protein specifically spin labeled at different sites along the primary 
sequence. This is carried out by calculating the motional restrictions of the spin label due to 
the primary and secondary protein structure, as well as due to the membrane lipids 9. A 
comparison of the experimental and theoretical values of the free rotational space profiles 
and optimization of parameters of the protein-lipid model reveals the structure and 
membrane embedment of the protein. Optimization of the protein-lipid model implies 
tuning the secondary structure of the protein, and optimizing the relative position, tilt and 
orientation of the protein in the membrane. At the end of the optimization, several 
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structures may produce equally good fits to the experimental data, indicating a set of 
allowed global protein conformations. Such a method is comparable to the distance 
geometry approach employed in two-dimensional solution NMR spectroscopy that also 
results in a family of structures 10.  

In a recent SDSL-ESR study of membrane-embedded M13 protein, the spectra of 27 
spin-labeled single-cysteine protein mutants were measured and analyzed in terms of the 
free rotational space of the spin labels attached to the protein, i.e., the effective space within 
which the attached spin labels may wobble 6,7. In the present work, this set of data is used 
as an input in the structure calculations guided by the free rotational space. The resulting 
family of best-fit structures of membrane-embedded M13 protein agrees well with the 
available SDSL-ESR data 7, but is also consistent with a recent model based on site-
directed fluorescence labeling 11-14. 

5.2 Theory and methodology 

5.2.1 Modeling approach 

For SDSL-ESR spectroscopy a protein is labeled at a specific site with a spin label of a size 
comparable to the size of the amino acid residues. This makes the rotational conformational 
space of the spin label sensitive to the local protein structure. In addition lipids surrounding 
the spin-labeled site at the membrane protein provide restrictive forces that will also limit 
the rotational conformational space of the spin label. There are three interesting features of 
ESR spectroscopy that can facilitate efficient modeling of the conformational space of the 
spin label:  

1. The motion of protein side chains at physiological conditions (i.e., room 
temperature) is fast on the nanosecond ESR time scale 4. For example, if the temperature is 
decreased, or a protein is put in an extremely rigid environment, the side chain motion of 
the spin label will be significantly slowed down or the spin label could become 
immobilized due to stabilizing interactions 15, making it insensitive to the space restrictions 
imposed by molecular groups of the protein and lipids, in which the protein is embedded. 
Such cases, however, are easily recognized experimentally by rigid-like ESR lineshapes 
and will be avoided in the approach discussed here. 

2. The backbone motion is much slower than the nanosecond ESR time scale 16,17, or 
at least slower than the side chain motion. This is especially valid for proteins embedded 
into membranes or in large multi-chain protein complexes 18. However, backbone atoms 
near the terminal ends can move to a larger extent, but such a case can be easily recognized 
in the ESR spectra and treated separately during the modeling. 
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3. The ESR experiment is insensitive to the exact atomic coordinates. Therefore 
there is no need for a precise calculation of an individual side chain conformation. This 
means that in the calculations only the average effects of all wobbling chains (amino acid 
side chains of the protein and acyl chains of the lipids) needs to be taken into account. 

These characteristic aspects of ESR spectroscopy offer us the opportunity to develop 
an approach that is computationally manageable and which provides a sufficiently high 
resolution to match the SDSL experiment. Under these conditions modeling of the 
conformational space of a spin-labeled side chain and its restrictions will be based on the 
following steps (see Figure 1) 9:  

 
Figure 1. Overview of the approach of membrane protein structure modeling, calculation of the 
restrictions, and structure optimization based on local structural constrains from SDSL-ESR.. 

1. Modeling of the membrane protein structure including all local rotations of the 
side chain of the amino acid residues and spin label, i.e., the conformational space. 

2. Modeling of the restrictions of the conformational space of the spin label by the protein 
backbone, the side chains of neighboring amino acid residues, and the surrounding lipids. 

3. Characterization of the restricted conformational space of the spin label in terms 
of the so-called normalized free rotational space Ω, to enable a) comparison with the 
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experimental SDSL-ESR data; b) optimization of the parameters of the structural model to 
provide a simultaneous fit of the modeled restrictions to the experimental restrictions; c) 
characterization of the structure of the protein and its embedment in the membrane. 

5.2.2 Modeling of membrane-embedded protein  

Protein modeling. To derive the atomic coordinates of a protein molecule, first its 
backbone structure is modeled, based on the backbone dihedral angles ϕi and ψi for each 
i-th amino acid residue. This is followed by the attachment of the amino acid side chains 
to the backbone. Since an atomistic resolution of modeling is not necessary for our case, 
the atomic structures of the amino acid residues and spin label are constructed using an 
approximation of fixed bonds lengths and bonds angles 19. The bond lengths and bond 
angles that we use are based on previously reported values 20-22. The so-called 
Ramachandran plot 23, which contains the allowed distributions of the backbone dihedral 
angles ϕi and ψi, was calculated with our model and compared with previously published 
plots 23-26. When optimizing the protein structure a pre-calculated Ramachandran plot was 
used to speed up the calculations by excluding forbidden secondary structures from the 
search. In the description of the protein structure two coordinate systems, absolute and 
relative, are simultaneously used. In an absolute Cartesian coordinate system, the 
structure of the protein and the coordinates of the amino acid side chains are stored. A 
relative coordinate system is used when constructing the side chain conformations 27-29. 
The details of the protein modeling are described in the Appendix A. 

 
Protein embedment in a membrane. For our analysis, we use membrane-embedded 
M13 major coat protein, which is 50-residues long and almost α-helical 30. This protein was 
selected, because it has been subject of a large number of biophysical studies in bilayers, 
making it ideally suited as a reference protein for a review, see ref 31. In addition, an excellent 
set of experimental spin label data is available of membrane-embedded M13 protein 7 that can 
be used to test the performance of our approach. Since this protein has a single 
transmembrane domain, it is virtually placed in a lipid bilayer by setting its initial start and 
end point of the transmembrane region using the information from previous work 7,11,12,14,32. 
The tilt angle of the protein is derived from the effective length of the transmembrane 
region and the steric thickness 33 of the lipid bilayer. Also the initial orientation angle, which 
defines the protein rotation around the symmetry axis of the helix, is taken from previous 
work 11,12,14. The effect of the lipids is modeled as a restrictive potential along the 
transmembrane region as the lipids tend to orient the side chains of the amino acid residues of 
the protein parallel to the acyl chains of the lipids. As discussed in the next section, we will 
assume that this restrictive potential is also effective in the head group region of the 
membrane. 
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5.2.3 Modeling side chain restrictions 

Sampling side chain conformations. Different combinations of torsion angles around 
single bonds of a side chain result in a set of rotamers, or side chain conformations, i.e., the 
conformational space. For sampling the conformational space, we use a so-called Residue-
Parts-Groups mechanism, which links neighboring side chain conformations and 
considerably speeds up the conformational sampling when checking the overlap between 
neighboring side chains. In this approach, the residue is split into parts according to the 
number of free bond rotations, so that all atoms within one part preserve their relative 
positions (see Appendix A, Figure A1D). Each large part is split into atom groups, while 
each group contains one heavy atom (C, O, N or S) with hydrogen atoms, if there are any. 
Thus, the largest parts are the aromatic rings of tryptophan, tyrosine, and phenylalanine. 
Glycine and proline are considered as an exception. The side chain of glycine is just a 
hydrogen atom, which makes it very flexible, so that almost all dihedral angles are possible. 
The side chain of proline has a cyclic structure, which gives it conformational rigidity by 
locking one of the dihedral angles. When calculating the conformational spaces, we will 
mainly focus on the repulsive van der Waals interactions that dominate close interatomic 
distances 16,34,35. For simplicity, interactions stabilizing the tertiary structure, such as sulfide 
bridges and hydrogen bonding, and helix-helix interactions due to effects of macrodipoles are 
not included. 

In determining the overlap between two side chain conformations, the steric contacts 
between atoms are checked only if the conformations are close enough in space: the 
distance is checked on the level of residues, parts, groups and then finally atoms. When 
determining the steric contacts between any two atoms, the distance between the atoms is 
compared with the sum of the original van der Waals radii, assuming that there are no 
interactions between the atoms that would allow any closer contacts. If a conformation of 
one side chain overlaps with another neighboring side chain, automatically all 
conformations, which partially repeat the current conformation, inherit this overlap result. 

 
Unrestricted conformational space. When modeling the conformational space of an 
amino acid side chain, we use equidistant rotational states with an optimized grid step 
varying from 10 to 45° 9. A torsion potential (similar as the “three staggered potential”) is 
implemented via fixed orientations of two subsequent bonds. However, the orientation of 
the second subsequent bond relative to the first one is much more poorly defined through 
molecular orbital effects, and it rather depends on van der Waals steric clashes, as was 
shown elsewhere 36,37 (see Appendix A). The van der Waals interaction is approximated 
only by a repulsion part (hard sphere exclusion volume) that takes care of the steric clashes 
in accordance with the high-temperature approximation that is used in our approach. Note, 
that in this case the effective van der Waals radii are reduced standard van der Waals radii, 
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arising from nonbonding electrostatic interactions in O-H, C=O and CH groups, as well as 
the anisotropy of C atom electron shell and nonspherical shape of the electron shell of C 
atoms. This enables a closer contact between the atoms than allowed on basis of the 
original van der Waals radii. The effective van der Waals radii are calculated from an 
analysis of protein structure data in the PDB data bank 24 (see Table A4). Conformations 
that have internal overlap are eliminated. In general, a too large number of conformations 
becomes a computational bottleneck in determining the restrictions due to overlap between 
neighboring side chains. In the course of our work, we found a compromise between 
modeling accuracy and computational costs by taking approximately 3000 conformations 
for the spin label and at most 1000 for the amino acid side chains. For simplicity, we 
assume that the initial probability Pinitial of the different conformations in the unrestricted 
conformational space is equal 9. Lists of allowed conformations, i.e., the unrestricted 
conformational space, calculated for each amino acid residue of the protein (see Figure 2A) 
are stored in memory and then used later for calculating the restrictions. 
 
Restricted conformational space. The statistical weight of side chain conformations 
not restricted by the backbone is further reduced by restrictions from adjacent amino acid 
side chains. If two residues are close and their side chains are large enough, their 
conformational spaces will overlap (see Figure 2A). The extent of overlap depends on the 
relative position of these two residues in the protein, i.e., on the local secondary structure. 
By this effect, the statistical weights of the overlapping conformations of both residues are 
reduced, i.e., the statistical weight of the i-th conformation that shares space with 

overlaps
kN conformations of the neighboring k-th residue is reduced by a factor 9:  

 
all overlaps
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where Nk
all is the number of all conformations of the neighboring residue. 

For a spin label attached to the protein, a chosen conformation of its side chain may 
overlap with many conformations of other neighboring amino acid side chains. Therefore, 
the probabilities for each of the overlapping pairs of conformations should be factorized. As 
a result the statistical weight of a particular spin label conformation will be reduced to a 
value between 0 and the initial value Pinitial, depending on the extent of overlap. Thus the 
combined restriction of the conformational space of the spin label from the neighboring 
residues is a product of factors 9: 

 
n

initial i
i i k

k

P P F= ∏ , (2) 

where Pi and Pi
initial are the statistical weights (probabilities) of the restricted and 

unrestricted i-th side chain conformation, respectively. The factors Fk
i are given by Eqn. 1. 

This effect is illustrated in Figure 2B.  
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Figure 2. Modeling of the allowed conformational space of M13 protein labeled with 3-maleimido 
proxyl spin label at position 25. A. Initial unrestricted conformational space of the spin label in which 
each small sphere represents one side chain conformation, as given by the coordinates of the oxygen 
atom of the nitroxide group (red), and the rotational conformational space of the amino acid 
residues, as given by the coordinates of the most distant heavy atom (orange) of the residue. B. The 
conformational space of the spin label is restricted by the protein backbone and neighboring amino 
acid side chains. The statistical weight of the conformations is coded with a red-yellow color gradient 
in which the red and yellow color correspond to unrestricted and restricted conformations, 
respectively. C. Restrictive effect of the lipids for M13 protein embedded in 14:1PC bilayers 6,7. The 
steric thickness of the phospholipid bilayer D includes both the hydrophobic and head group regions 
of the membrane 

Finally, if the spin-labeled protein site is in a transmembrane region the statistical 
weight of the spin label conformations is further reduced by the lipid molecules. The side 
chains of the amino acid residues as well as of the spin label that are surrounded by the 
lipid environment will feel the fluctuating lipid acyl chains as well as a restrictive effect of 
lipid head groups. It is assumed that this lipid effect arises from a lateral pressure profile 
that is present in a membrane 38. For a spin label at each single mutant position in the lipid 
bilayer we hypothesize that the lateral pressure is constant for all its conformations. Thus 
only the direction of the conformation relative to membrane normal makes a difference in 
the restrictive effect of the lipids. The same applies for the side chains of the amino acid 
residues of the protein. Such a restrictive lipid effect is in agreement with the finding that 
the fluctuations of the lipid molecules are on the time scale from ps to ns 39 and that the 
lipid-protein interactions are just slightly more favorable than lipid-lipid interactions 40. 
Recent molecular dynamics simulations show that side chains from aromatic, polar and 
charged amino acid residues tend to orient along the membrane normal 41,42, supporting our 
model. This leads to the statistical weight Pi of the i-th conformation given by 9: 

D
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 ( )1 sini i iP P= − ϑ , (3) 

where ϑi is the angle between the membrane normal and side chain direction of a i-th 
conformation (which is the vector from the β-carbon atom to nitroxide oxygen atom of the 
spin label side chain).  

In combining the contributions for the restrictions of the conformational space, the 
statistical weight Pi of a certain conformation on a single i-th side chain conformation can 
be summarized as 9:  

 ( )
0,

1 1 sin
1,

overlapsnbackbone overlapinitial k
i i iall

no backbone overlap k k

N
P P

N
⎛ ⎞⎧ ⎫

= − − ϑ⎨ ⎬ ⎜ ⎟
⎩ ⎭ ⎝ ⎠

∏ . (4) 

The effect of the lipids on the conformational space of membrane-embedded spin-
labeled M13 coat protein is shown in Figure 2C. 

 
Characterization of the restricted conformational space of the spin label. ESR 
spectroscopy is sensitive to the orientation of the spin label nitroxide group relative to the 
external magnetic field, thus the distribution of orientations is reflected in the measured 
ESR spectrum. In general the orientation of the NO group does not coincide with the 
geometrical orientation of the side chain of the spin label. Both orientations depend on a 
combination of free rotations of the side chain. The difference between geometrical 
orientations of the side chain and the orientation of the nitroxide group varies from one 
conformation (rotamer) to another. This is taken into account in our model: conformational 
space restrictions are calculated for geometrically defined conformations, while the 
calculation of the restrictions for the conformational space is based on nitroxide group 
orientations. 

To characterize the restricted conformational space of the spin label, we refer to the 
cone model that is also used in the analysis of experimental ESR spectra 7,43,44. The cone 
model is parameterized with the angles ϑ0 and ϕ0 (Figure 3A), which describe the 
amplitude and the anisotropy of the spin label rotational motion within a cone, respectively. 
Parameters ϑ0 and ϕ0, available from ESR spectra analysis, are connected with the averages 

2cos ( )ϑ  and 2sin ( )ϕ : 

 2 2
0 0

1cos ( ) cos ( ) cos( ) 1
3

⎡ ⎤ϑ = ϑ + ϑ +⎣ ⎦  (5) 

 2 2 0

0

sin(2 )1sin ( ) 1 cos ( ) 1
2 2

⎛ ⎞ϕ
ϕ = − ϕ = −⎜ ⎟ϕ⎝ ⎠

 (6) 

The averages 2cos ( )ϑ  and 2sin ( )ϕ  can be calculated numerically from the modeled 
restriction of the conformational space of the spin label (Figure 3B-D). The average 

( )2cos ϑ  characterizes the opening of the simulated spin label conformational space (a 
larger value indicates a higher restriction of the conformational space). The average 
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( )2sin ϕ  characterizes the asymmetry of the simulated spin label conformational space 
(a smaller value corresponds to a more asymmetric conformational space). The average 

( )2cos ϑ  is calculated by:  

 ( )
( )2

2cos

N
NO NO
i avg i i

i
N

i i
i

p

p

ξ ⋅ξ ρ
ϑ =

ρ

∑

∑
, (7) 

where NO
iξ is the normalized nitroxide NO bond direction of the i-th conformation, NO

avgξ  is 
the normalized average nitroxide NO bond direction, and pi and ρi are the probability 
(statistical weight) and local density of the i-th conformation, respectively. The average 

( )2sin ϕ  is calculated by: 

 ( )X NO NO NO NO
i i i avg avgξ = ξ − ξ ⋅ξ ξ , (8) 

 ( ) ( )2
2sin 1 X X

i i refϕ = − ξ ⋅ξ  (9) 

 ( )
( ) ( )

( )

2 2

2

2

1 1
sin

1

N
X X NO NO
i ref i i i avg

i
N

NO NO
i i i avg

i

p

p

⎛ ⎞− ξ ⋅ξ ρ − ξ ⋅ξ⎜ ⎟
⎝ ⎠ϕ =

ρ − ξ ⋅ξ

∑

∑
 (10) 

where X
iξ is a projection of NO

iξ on a plane perpendicular to NO
avgξ ; X

refξ  is a normalized 
reference direction for the calculation of the asymmetry of the conformational space that 
corresponds to the highest radial density of X

iξ  directions. 
Both angles ϑ0 and ϕ0 are combined into one characteristic parameter, the so-called 

normalized free rotational space: 

 
( )

0 0
2/ 2

ϑ ϕ
Ω =

π
, (11) 

which can be compared to the normalized free rotational space values extracted from 
SDSL-ESR experimental data 7,9. The results of testing of the sensitivity of the normalized 
free rotational space are presented and discussed in the Appendix B. 
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Figure 3. Characterization of the conformational space of M13 protein labeled with 3-maleimido 
proxyl spin label at position 25 in terms of a cone model. A. Cone model parameterized with angles ϑ0 
and ϕ0. B. The opening of the conformational space is characterized by the average 2cos ( )ϑ  (Eqn. 
7). The angle ϑ is between the NO bond direction NO

iξ  in the i-th conformation and the average 
direction of the NO bond NO

avgξ . The NO vectors at different conformations are represented with small 
black direction lines. C. The asymmetry of the conformational space is characterized by 2sin ( )ϕ  
(Eqn. 10). The angle ϕ is between the X direction X

iξ  (a projection of NO
iξ  on a plane perpendicular 

to the average NO direction NO
avgξ ) of the i-th conformation and a reference X direction X

refξ  
(direction that corresponds to the highest radial density of the NO

iξ directions). D. Schematic 
illustration of the cone angles ϑ0 and ϕ0 on the conformational space of the nitroxide spin label. 

 
Protein structure optimization. The goal of our work is to use the free rotational space 
that is experimentally obtained for a spin-labeled membrane protein along its primary 
sequence, as a constraint in optimizing its three-dimensional structure and membrane-
embedment. For this, we use a stochastic optimization algorithm to tune the secondary 
structure of the protein and the relative position of the protein in the membrane, so that the 
calculated local restrictions would correspond to the characteristics extracted from the 
experimental ESR data. The parameters that are optimized are listed in Table 1. 
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Table 1. Optimization parameters of protein structure and membrane embedment for a single 
membrane-spanning transmembrane M13 major coat protein 30. 

Parameter Unit Description 
{ϕi, ψi} ° 2×50 pairs of dihedral angles (the first and last angles, ϕ1 and ψ50, are 

not defined) 
nstart - Starting position of the transmembrane region of the protein 
nend - End position of the transmembrane region of the protein 
D Å Steric thickness of the membrane (Figure 2C) 
θ ° Tilt angle of the protein with respect to the membrane normal 
ϕ ° Rotational angle (rotation of the protein relative to the bilayer around 

the long axis of the protein) 
dshift 
 

Å 
 

Shift of the protein in the bilayer along the membrane normal (used for
the fine-tuning of the transmembrane position of the protein) 

The optimization module is based on a stochastic algorithm of the Metropolis Monte 
Carlo family 45 with several elements of the Evolutionary Optimization (mutation operator, 
replacement operator and elite) 46,47. Unlike conventional Evolutionary Optimization, each 
optimization run in our algorithm tunes a single structure. One run counts for 200 
generations. At each generation the current structure of the protein is modified by mutation 
(change of backbone dihedral angles) and crossover (introduction of the secondary structure 
motifs achieved in previous generations and stored in elite) operators. The parameters that 
describe the protein-lipid model (Table 1) are tuned simultaneously: the steric thickness 33 
has to match protein tilt angle and transmembrane length, in addition the relative 
orientation of the protein in the membrane is tuned by a vertical shift and the rotation of the 
protein around its long axis. The quality of the fit at each generation is evaluated by the 
goodness of fit as follows: 

 
2

, ,2

,

1 exp i sim i

i exp iN
⎛ ⎞Ω − Ω

χ = ⎜ ⎟⎜ ⎟ΔΩ⎝ ⎠
∑ , (12) 

where N is the number of spin-labeled mutants, Ωexp,i and Ωsim,i correspond to 
experimentally derived and simulated free rotational space values at i-th mutant position, 
while ΔΩexp,i represents the inaccuracy of the experimental free rotational space. The 
goodness of fit χ2 guides the optimization routine determining whether a current structure is 
accepted for the next generation of structural evolution. 

After multiple runs of optimization, many final structures will have the same 
goodness of fit, given by different Ω profiles. This provides a family of structures that 
characterizes the low-resolution structure of the protein. Such a method is comparable to 
the distance geometry approach employed in two-dimensional solution NMR spectroscopy 
that also results in a family of structures 10,48,49. 
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5.3 Results 

The secondary structure of membrane-embedded M13 protein, the thickness of the lipid 
bilayer and the position of the protein relative to the membrane normal were optimized with 
a multi-run optimization algorithm. The simulation data allow a comparison with the 
experimental data obtained from SDSL-ESR spectra of 27 mutants of M13 protein 
reconstituted in 14:1PC bilayers 6,7. This protein served as a reference membrane protein to 
test the basic ideas of our approach. Initially the secondary structure of the protein was set 
to an α-helical conformation (ϕ = –57° and ψ = –47°). The lipid effect was defined for the 
transmembrane region between amino acid positions 14 and 46 according to the 
experimental profiles for the free rotational space Ω and rotational dynamics 7. The initial 
steric thickness of the bilayer was set to 40 Å resulting in an initial protein tilt of about 35° 
in accordance with the fluorescence-based protein model 11,12,14. The multi-run evolutionary 
optimization was repeated for 1000 times. Each run contained 200 generations. At each 
generation a new structural conformation of the protein was obtained by modifying 
stochastically the dihedral angles of the main chain, by tuning the parameters of lipid 
bilayer, and by optimizing the relative position and orientation of the protein in the lipids. 
For each new structure the corresponding local structural restrictions were calculated. Thus 
altogether about 200,000 different global structural conformations were checked. 

The result of structural optimization is presented as a family of most successful (in 
terms of goodness of fit) global protein conformations together with the summarized 
simulated restrictions (Figure 4A). The goodness of fit χ2 of this assembly of 50 structures 
is in the range from 2.7 to 3.7. These structures are mainly α-helical, some of them 
demonstrate a tiny kink, i.e., as can be seen for the structure in Figure 4B. The tilt angle 
varies between 10 and 40° with a mean value around 26°. This mean tilt angle is in 
excellent agreement with the experimental data (23° ± 4, as determined from quantitative 
fluorescence site-directed analysis 14). The steric bilayer thickness of these structures is in 
the range from 37 to 44 Å with a mean value around 41 Å. This value is quite reasonable as 
compared to the typical steric thicknesses of a phospholipids bilayer around 44 Å 33,50. The 
transmembrane region was found between amino acid positions 12-17 and 46-47. In most 
cases the transmembrane region starts at position 14 and ends at position 46. 

One of the best-fit structures is shown in Figure 4B. The corresponding goodness of 
fit of this structure is χ2 = 3.2. For this topology, the transmembrane region is between 
amino acid residues 14 and 46 as indicated by a drop of the free rotational space Ω in the 
simulated data below 0.5. The tilt angle is about 25° and the resulting steric bilayer 
thickness turns out to be 42 Å. The local restrictions of the same structure simulated 
without including the lipid effect (Figure 4C) provide a goodness of fit χ2 of 33.0, which is 
much worse than for the membrane-embedded protein. This indicates that the presence of 
lipid restrictions is required to get a good fit to the experimental data. 
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Figure 4. Optimization of the structure and membrane-embedment of M13 protein by fitting the 
calculated local restrictions (blue circles) to the restrictions profile obtained from SDSL-ESR (red 
circles). A. A population of best-fit structures (50 structures with a goodness of fit χ2 in the range 
from 2.7 to 3.7) of M13 protein in 14:1PC lipid bilayers. The yellow-red color gradient represents the 
structural density in this population of structures. The steric thickness of lipid bilayer (including 
hydrophobic and head group regions) is represented with yellow planes. B. A single structure from 
the population of best-fit structures from (A) with χ2 = 3.2. C. The free rotational space for same 
secondary structure of M13 protein calculated without taking into account the lipid effect (χ2 = 33.0). 

5.4 Discussion  

Extensive testing of the model (see Appendix B) shows that the free rotational space is 
sensitive to the protein primary sequence, secondary structure, and to the position and 
orientation of the protein in the lipid system. In addition, calculated restrictions from 5000 
randomly simulated structures of M13 protein reconstituted in phospholipids produce a 
wide range of Ω values that cover all 27 points of the experimental data 9. The optimization 
routine that is implemented in our model is capable to considerably improve the fits 
(starting with an initial α-helical structure). Multiple structures (Figure 4A) obtained in 
1000 runs of optimization are in excellent agreement with a recently proposed 
fluorescence-based M13 protein model 11,12,14. This nice accordance implies that our 

45403530252015105

1
0.8
0.6
0.4
0.2

0

45403530252015105

1
0.8
0.6
0.4
0.2

0

45403530252015105

1
0.8
0.6
0.4
0.2

0

Ω 
 

Ω 

Ω 
 

Good Fit structure 

No lipid effect 

50 best fit structures 

mutant position  - experimental data - simulated data

B 

C 

A 



Chapter 5 
 

 
 

81 

modeling and optimization approach is fundamentally sound and that the simplifications we 
have made in our model are acceptable. 

As compared to related papers on SDSL-ESR that employ molecular dynamics 
simulations 51-55,56 ,57,58 our approach has the following advantages: 1. The simplicity of the 
underlying physical principles in the structural model; 2. The simultaneous analysis of 
multiple SDSL-ESR data from all available spin-labeled mutant positions; 3. There is no 
need for dynamics trajectories; 4. As a consequence, our calculations are 3-4 orders of 
magnitude faster than calculations based on molecular dynamics simulations. In the present 
case, extending the computation time will impose a severe limit to the calculations, as the 
optimization of the 200,000 structures resulting in Figure 4A already takes four weeks of 
CPU time on a 20-cores computer cluster (6×Opteron Double Core 2.4 GHz and 8×Athlon 
Single Core 2.13 GHz). 

Analysis of best-fit single structures (like one in Figure 4B) indicates that the 
optimization algorithm was successful to provide accurate fits for different parts of the 
protein picking up the main trends of the experimental data. Some experimental points may 
not be fitting well (e.g., mutant positions 10, 42, 44 for the structure in Figure 4B). This 
results in ranges of calculated Ω values for the family of best-fit structures (Figure 4A). The 
observed discrepancy between simulated and experimental data could be either due to the 
simplifications we assume in calculating the lipid effect, or to a incorrectly determined 
local motif of the secondary structure, related to simplifications in the protein structure 
determination. Although, the Ω trend remains correct for short subsequences, still some 
single mutant positions may experience different lipid effect most likely due to different 
local orientations of the spin label with respect to the membrane normal. 

The present paper focuses on a small protein embedded in a lipid bilayer. However, 
our method can also be used for larger proteins, consisting of several protein domains (e.g., 
helices) and it is not necessary for the applicability of the method that the domains are 
transmembrane or helical. In such a more complicated case, the position and orientation of 
each domain relative to the rest of the complex have to be parameterized, which generally 
will require some approximate information about the folding of the protein domains. 
Another limitation of the method is that SDSL-ESR data should be available from a 
sufficient number of spin-labeled sites and that, according to assumptions in the model, 
only data can be used that are obtained at physiological temperature (i.e., room 
temperature). 

Fitting the simulated to the experimental data remains a challenging task. The 
number of parameters even for a small protein is already high (for a 50-amino acid residue 
long protein we have more than 100 parameters). On the other hand, in our case there are 
27 experimental points to be fitted simultaneously. For such a task an efficient optimization 
algorithm is needed that would be capable to efficiently handle a high number of 
optimization parameters. A good candidate is a hybrid evolutionary algorithm that could 
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optimize a population of structures simultaneously 59. In that case, to make the optimization 
more efficient, the information about known secondary structure motifs, tertiary structure 
interactions as well as information about protein-lipid interaction could be implemented in 
specialized genetic operators. 

5.5 Conclusion 

The proposed method allows fitting of the simulated restrictions of the free rotational space 
to the experimental data obtained from SDSL-ESR spectra. For a reference membrane 
protein (membrane-embedded M13 protein reconstituted in 14:1PC bilayers), a multi-run 
optimization results in a family of favorable protein structures, which not only agree with 
the available SDSL-ESR data, but also are consistent with the previously published model 
based on site-directed fluorescence labeling 11,12,14,30. 

Our simulations show that the simultaneous analysis of available SDSL-ESR data 
based on structural modeling provides information about membrane protein structure and 
structural characteristics. Structural modeling allows using additional data from primary 
structure analysis (secondary structure predictions, hydropathy index calculation) as well as 
any additional information potentially available from other experimental techniques (X-ray 
high-resolution structures, information from NMR spectroscopy, fluorescence 
spectroscopy, infrared spectroscopy, and circular dichroism) could be combined to provide 
optimization constraints for structure modeling. In this perspective, structural modeling is 
thought to be a connecting link, which could transfer multiple data into a high-resolution 
structure or structural characterization and reveal the functional properties of membrane 
proteins. The present method provides a challenging starting point for the development of a 
powerful methodology for the structure characterization of membrane protein, as an 
alternative to conventional techniques. 
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5.6 Appendix A. Protein structure modeling. Tuning 
interatomic contact distances with Ramachandran plot 
calculation 

The modeling of the protein structure makes use of previously reported fixed bond lengths 
and bond angles 20-22 that are presented in Tables A1 and A2. The secondary structure of a 
protein is parameterized with pairs of backbone dihedral angles ϕi and ψi (Figure A1A). 
Due to steric restrictions between backbone atoms not all angle pairs are allowed. For a 
three-residue fragment the allowed combinations of the angles ϕi and ψi for the central 
amino acid residue is presented in a so-called Ramachandran plot 23. To derive the ϕi - ψi 
distribution, a list of backbone atom pairs has to be checked for steric interatomic contacts 
24. In our case, the sterically allowed effective minimum distances between the backbone 
atoms (sums of atom van der Waals radii) were tuned by computing Ramachandran plots 
and comparing them with previously published plots 23-26. As a consequence the van der 
Waals radii of the atoms (Table A3) needed to be reduced in agreement with the literature 
24,36,60,61. Note that the reduction of the “apparent” van der Waals radii simulates the effect 
of atomic interactions when checking steric overlaps 16,34,35. For example, nonbonding 
electrostatic interactions between O-H, C=O and CH groups, as well as the anisotropy of 
the C atom electron shell contribute to the reduction of the average distance at which those 
groups can be found. In our case, calculation of the Ramachandran plot suggested a 
reduction of the minimally allowed initial interatomic distances between backbone atoms 
by 3-16% (Table A3). The atom pairs in Table A3 are split into three groups according to 
the restrictive effect that they impose on the distribution of backbone dihedral angles ϕ and 
ψ. Some discrepancy can be found between the Ramachandran plot calculated with our 
model (Figure A1B) and the distribution of the angles ϕ and ψ based on PDB structures 
analysis 25 (Figure A1C). This difference arises from the fact that in our calculations of the 
Ramachandran plot we used a three-alanine peptide, whereas ϕ and ψ angle distribution of 
the reference 23-26 was obtained by analysis of different amino acid residues of structures 
deposited in the PDB data bank. For the conformational sampling within the 
conformational space, the residue is split into parts according to the number of free bond 
rotations, so that all atoms within one part preserve their relative positions (blue ovals in 
Figure A1D). Each complex part is split into atom groups, while each group contains one 
heavy atom (C, O, N or S) with hydrogen atoms, if there are any. The result of the tuning of 
the contact distances is presented in Table A4 with the reduced van der Waals atoms radii. 
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Table A1. Values of the chemical bond lengths used in the modeling of the protein structure. These 
values are based on previously reported constants 20-22. 

Bond Bond length (Å) 
N-Cα (backbone) 1.46 
Cα-C (backbone) 1.53 
C-N (backbone) 1.33 
C-C 1.53 
C-S, S-C 1.80 
C-O 1.42 
C=O 1.24 
C-N (Lys) 1.50 
C-N, N-C (Arg, Asn, Gln) 1.32 
C-H, O-H, N-H 1.00 
S-H 1.30 
C-C (in ring) 1.35 
C-C (spin label) 1.45 
N-O (nitroxide) 1.40 

Table A2. Values of the chemical bond angles used in the modeling of the protein structure. These 
values are based on previously reported constants 20-22. 

Bond Bond angle (º) 
– C – 109.5 
– C = 120.0 
– N – 120.0 
O–H 104.5 
S–H 104.5 

Table A3. Computational results of the interatomic distances between the backbone atoms tuned by 
computing Ramachandran plots. Tuned values suggest a reduction of the minimally allowed 
interatomic distances, which is in accordance with the literature 24,36,61. 

Atoms pairs 
 

Original van der Waals 
interatomic distances (Å) 

Tuned interatomic 
distances (Å) 

Restricting ϕ   
Cβ, Oi-1 3.15 2.70 
Oi-1, C 3.05 2.55 
Restricting ψ   
Cβ, O 3.15 2.70 
Cβ, Ni+1 3.30 2.95 
N, Hi+1 2.72 2.30 
Cβ, Hi+1 2.92 2.65 
Restricting both ϕ and ψ   
Oi-1,O 2.80 2.70 
Oi-1, Ni+1 2.95 2.70 
Oi-1, Hi+1 2.57 2.50 
H, Hi+1 2.34 2.10 
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Table A4. Reduced van der Waals atoms radii used in the modeling of the conformational space of 
the amino acid side chains in accordance with 34,60,61, compared with the original values. 

Atom, atom group 
 

Original van der 
Waals radius (Å) 

Reduced van der 
Waals radius (Å) 

C 1.75 1.25 
C (carboxyl) 1.65 1.15 
C (aromatic) 1.65 1.65 
N 1.55 1.25 
O 1.40 1.20 
S 1.80 1.50 
H 1.17 1.17 
H (polar, aromatic) 1.00 1.00 
CH, CH2, CH3 2.27 1.50 
SH, OH, NH, NH2, NH3 2.17 1.55 

 
Figure A1. Protein secondary structure parameterization. A. Definition of the backbone dihedral angles. 
Available backbone free rotations and corresponding dihedral angles are shown on a three-residue model. Amino 
acid side chains are schematically presented with the green ovals marked with ‘R’. B. Ramachandran plot: the 
distribution of allowed ϕ and ψ backbone dihedral angles (islands colored with black) calculated with our model 
for a three-alanine peptide. Nine backbone atom pairs were analyzed. Different grey scale regions represent ϕ 
and ψ combinations that are forbidden due to steric clashes between atoms pairs. C. Distribution of ϕ and ψ 
dihedral angles obtained by analysis of 240 protein structures from the Protein Data Bank 25. D. Residue side 
chain presented with a so-called Residue-Parts-Groups mechanism. The residue is split into side chain parts (blue 
ovals) including backbone zero-part (brown oval). Each part is composed of atom groups (green circles) which 
contain one of the heavy atoms (C, O, N or S) and often a few hydrogen atoms.  
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5.7 Appendix B. Contribution of different restrictive 
factors to conformational space restriction 

The sum statistical weight of the conformational space, PSUM, which is the sum of the 
statistical weights of the single conformations Pi, shows the total effect of the different 
restrictive factors that contributes to a reduction of the statistical weight. This is given by: 

 ( )1initial
SUM SUM B S LP P R R R= − − − ,  

where initial
SUMP  is the sum statistical weights of the unrestricted conformational space; RB, RS, 

and RL characterize the reduction of the sum statistical weight due to overlap with the 
backbone and neighboring side chains, and due to the lipids, respectively.  

A relative analysis of the different restrictive factors that contribute to the restriction 
of the conformational space of the spin label shows that approximately half of the 
restrictions arise from side chain conformations that overlap with the backbone (Table B1). 
The conformational overlap with neighboring side chains and lipids contributes to the 
restrictions with about 30 and 10%, respectively. This means that half of the conformations 
become fully restricted due to ‘hard’ overlap with the backbone, the other half of the 
conformations considerably lose their statistical weights and finally the occurrence 
probability of still allowed conformations is redistributed. These results indicate that the 
major restrictive factor that defines the conformational space of the side chains is the 
secondary structure of the protein. The side chains compete for the available space with 
each other and also with the surroundings (e.g., the lipid acyl chains). 

Table B1. Computational results of the relative comparison of the restricting factors that contribute to the 
reduction of the conformations statistical weights and restrict the conformational space of the spin label. 

Restricting factor Notation Reduction of PSUM
initial 

Overlap with the backbone RB ~ 50-60 % 
Side chain neighborhood RS ~ 30 % 
Lipids RL ~ 10 % 
Reduced sum probability PSUM ~ 1 % 

5.7.1  Spin label conformational space sensitivity to primary structure 

To test the sensitivity of the conformational space of the spin label to the primary structure 
of a protein, the normalized free rotational space Ω was calculated for the 3-maleimido 
proxyl spin label attached to the central (10th) cysteine residue of a number of artificially-
designed 19-residue peptides in an α-helical conformation (ϕ = –57° and ψ = –47°). Since 
the secondary structure in tests was set to be uniform among all oligopeptides, the resulting 
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differences in Ω (Figure B1A) can be assigned to the properties of the amino acid residues, 
i.e., to the primary structure. As can be seen in Figure B1A, the restrictive effect of the 
primary structure depends on the flexibility and on the size of the amino acid side chains.  

 
Figure B1. Spin label conformational space sensitivity to primary structure. A. Normalized free 
rotational space Ω (orange data points) for artificially-designed 19-residue peptide homopolymers in an 
α-helical conformation (ϕ = –57° and ψ = –47°) with the 3-maleimido proxyl spin label attached to the 
central (10th) cysteine residue. For a few oligopeptides the conformational space of the spin label is 
illustrated in a molecular model with the yellow color corresponding to the restricted and red to the 
unrestricted conformations. B. Frequency (f) histogram of the Ω distribution for several thousands of 
conformations of an oligolysine peptide (K) (left) and a simplified representation showing its inter-
quartile ranges given by the 5th, 25th, 75th, and 95th percentile (right). C. Inter-quartile ranges of typical 
peptides: oligoglycine – G, oligoalanine – A, oligolysine – K, oligoarginine – R and oligotryptophan – 
W. In B and C all backbone dihedral angle pairs are the same along the oligopeptide. 

The long and flexible side chains of lysine and arginine as well as the bulky side 
chains of tryptophan, phenylalanine, tyrosine and histidine show the strongest restrictions. 
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On the contrary, the side chains of glycine, alanine, and serine are smaller resulting in a less 
restricted conformational space for the spin label  (Figure B1A). 

To examine the accumulated effect of primary structure for the different secondary 
structure motifs, the backbone dihedral angles along the oligopeptides were varied 
stochastically within the allowed regions of the Ramachandran plot. Since the secondary 
structure was uniform along the peptide, the changes in the calculated normalized free 
rotational space Ω for the different oligopeptides and for the specific secondary structure 
are directly related to the properties of the particular amino acid side chains, i.e., to the 
primary structure. To illustrate this effect, the Ω values for an oligolysine peptide were 
sorted in a histogram (Figure B1B). This Ω distribution was simplified by plotting the inter-
quartile ranges that correspond to 5th, 25th, 75th, and 95th percentiles of the Ω distribution. 
For a number of typical oligopeptides the inter-quartile ranges are plotted in Figure B1C. 
Amino acid residues with small side chains (i.e., glycine and alanine) are not very 
restrictive, as indicated by a relatively large median and narrow distribution of the 
conformational space of the spin label (Figure B1C, columns G and A). In this case, the 
spin label will be less sensitive to different elements of secondary structure. However, 
amino acid residues with bulky side chains (tryptophan) or long and flexible side chains 
(arginine and lysine) more strongly confine the conformational space of the spin label (see 
columns W, R and K in Figure B1C). 

Among the tested structures the probability that the value of the normalized 
conformational space Ω of the spin label in the oligolysine peptide exceeds 0.77 is 25%, and 
the probability that the spin label is immobilized with an Ω value below 0.63 is also 25% 
(Figure B1C, column K). It is even more striking that the probabilities of the spin label being 
very unrestricted with Ω above 0.84 and very restricted with Ω below 0.39 are both equal to 
5%. The same applies to the oligoarginine and oligotryptophan peptides with virtually 
identical probability levels (Figure B1C, columns R and W). This indicates that the spin label 
is more sensitive to the secondary structure rather than to the primary structure. 

5.7.2 Spin label conformational space sensitivity to secondary structure 

To explore the sensitivity of the conformational space of the spin label to the secondary 
structure, the backbone restrictions RB (i.e., the reduction of the sum statistical weight due 
to overlap with the backbone) were calculated for an artificially-designed oligoalanine 
peptide. By using alanine as a small amino acid residue, we minimized the effect of primary 
structure. The dihedral angles ϕ and ψ at the position of the spin label were systematically 
varied within the allowed regions of the Ramachandran plot with a grid step of 5°, resulting 
in approximately 1000 different secondary structures. The remaining part of the 
oligopeptide was fixed to an α-helix. The calculations show that RB varies from 40 to 100% 
(Figure B2A), indicating that most restrictions arise from an overlap of the conformational 
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space with the backbone. Consequently Ω varies from 0.3 to 0.9 (data is not shown). Thus 
changing the secondary structure of a protein locally at the spin label position considerably 
affects its conformational space. 

 
Figure B2. Sensitivity of the conformational space of the spin label to the secondary structure. The 3-
maleimido proxyl spin label is attached to the central (10th) cysteine residue of a number of 
artificially-designed 19-residue oligoalanine peptide in an α-helical conformation (ϕ = –57° and ψ = 
–47°). A. Backbone restrictions RB (i.e., the reduction of the sum statistical weight due to overlap with 
the backbone) at the spin-labeled site. The dihedral angles ϕ and ψ at the position of the spin label 
were systematically varied within the allowed regions of the Ramachandran plot with a grid step of 
5°, resulting in approximately 1000 different secondary structures. The remaining part of the 
oligopeptide was fixed to an α-helix. Each allowed conformation is represented with a colored dot in 
the Ramachandran plot with the coordinates corresponding to the angles ϕ and ψ at the spin label 
position (the red-yellow color gradient encodes RB from 0 to 100%). Molecular models of typical 
secondary structures conformations (indicated on the left and right sides of the figure) point to the 
corresponding regions of the plot. The regions for α-helix and β-sheet conformations are indicated as 
well. B. Backbone restrictions at the spin-labeled site i=10 arising from adjacent amino acid 
positions up to five to the N and C-terminal end (i.e., i±1, i±2, i±3, i±4, i±5). The remaining 
secondary structure was taken as α-helix. For labeling of the axes and for the other details, see (A). 
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To investigate what effect of secondary structure at neighboring amino acid positions 
on the conformational space of the 3-maleimido-proxyl spin label, we repeated the 
calculation of RB by changing the dihedral angles further away from the i-th labeled site. 
The result is shown in Figure B2B for up to five amino acid positions towards the N and C-
terminal ends. The remaining secondary structure was fixed to an α-helix. In all cases, the 
conformational space of the spin label is affected by this effect of secondary structure, the 
range of backbone restrictions varies from 30 to 100% (Figure B2B). Based on this finding 
it may not be necessary to have all positions labeled. Instead, sites could be labeled 
alternately, reducing the number of mutants by a factor of two. The restrictive effect is most 
strong, as expected, at one helical winding up or down to the spin label site (i.e., at i±3 
and i±4). For positions up to the C-terminal end (i.e., at i+3, the restrictive effect is slightly 
larger as compared to positions down to the N-terminal end. This may be related to the fact 
that in α-helices the amino acid side chains have the tendency to slightly tilt toward the N-
terminal end of the helix 62. 

5.7.3 Spin label conformational space sensitivity to lipid environment 

The tendency of lipids to reduce the conformational space of amino acid side chains was 
introduced in the model as an additional restrictive factor that limits the conformational 
space of the spin label. This effect is demonstrated on exploring the normalized free 
rotational space Ω of membrane-embedded spin-labeled M13 protein. We assume that the 
protein is in an α-helical conformation 11-14. To enable comparison with experimental spin-
label ESR data, we assume that the protein is reconstituted in 1,2-dierucoyl-sn-glycero-3-
phosphocholine (22:1PC) phospholipid bilayers 7 with the transmembrane region defined 
between amino acid positions 9 and 47 and a steric bilayer thickness of 55 Å. This protein-
lipid model implies that the restrictive lipid effect extends into the phospholipid headgroup 
region. In this way, the tilt angle of the protein in the membrane turns out to be around 20°, 
in good agreement with a protein model based on site-directed fluorescence labeling 11,12,14. 
For comparison we also examine the protein without a lipid environment.  

For almost all amino acid positions in the transmembrane region of M13 protein, the 
normalized free rotational space Ω is reduced by 20-40% due to the lipid effect 
(Figure B3A). Also, the trend of the values for Ω is slightly changed by the lipids. This is 
due to the fact that at each spin-labeled site the lipid effect strongly depends on the relative 
orientation of the conformational space of the spin label in relation to the membrane normal 
(i.e., the restrictive effect of the lipids depends on the angle between the lipids acyl chains 
and the spin label side chain conformations). 

The effect of the orientation of M13 protein in the membrane (i.e., rotation about the 
helical axis) on the conformational space of the spin label was studied by systematically 
changing the orientation angle from 0 to 360° by 1°. Then the values for Ω were calculated 
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for the different spin label positions along the protein. The secondary structure of the 
protein, the transmembrane region, and the tilt angle were set to the same values as in the 
previous calculation. From these Ω data the frequency histograms were determined 
(Figure B3B) and for each amino acid position collected in Figure B3C. As can be seen, 
this approach results in quite wide ranges for Ω in the transmembrane region. This effect is 
due to the change of the relative orientation of the conformational space of the spin label in 
relation to the membrane normal. Thus simultaneous analysis of the experimental Ω values 
from SDSL-ESR data combined with modeling of the membrane-embedded protein may 
reveal the correct orientation angle of the protein in the membrane. 

 
Figure B3. Sensitivity of the conformational space of the spin label to the lipid environment. The 3-
maleimido proxyl spin label is attached to membrane-embedded M13 protein in an α-helical 
conformation (ϕ = –57° and ψ = –47°). The transmembrane region is defined between amino acid 
positions 9 and 47, corresponding to a tilt angle of 20°. A. Normalized free rotational space Ω of the 
spin label at different amino acid positions on the protein in the presence of lipids (grey curve) and 
without lipids (black curve). B. Effect of orientation of M13 protein in the membrane by 
systematically changing the orientation angle from 0 to 360° in steps of 1°, shown in a frequency 
histogram (left) and using a blue color coding (right). The spin label is at position 23. C. Amino acid 
position dependence of the Ω data as determined in (B). 
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6.1 Introduction 

Revealing the function of a protein requires high-resolution structural information, 
information about protein dynamics, and biological data on this particular protein. As long 
as a protein may be crystallized, high-resolution structural information can be obtained by 
using X-ray crystallography. Currently there is no better method for obtaining high-
resolution structural information. Nevertheless, for proteins that are difficult to crystallize, 
or to concentrate, only very limited structural information is available. Therefore, it is not 
surprising that the structure determination of membrane protein is one of the most 
challenging fields of structural biology and structural proteomics 1,2. Due to very 
heterogeneous environment in which they are found, the classical methods have difficulties 
with the structure determination of membrane proteins 3. 

The structure of membrane proteins has been already tackled with X-ray 
crystallography and NMR. However, when studying membrane proteins, the protein has to 
be incorporated in a membrane-like environment, which can create special conditions that 
could affect its structure. Obtained structures then need to be checked for correspondence 
with the functional protein conformation. And an even more difficult task is to obtain 
information about the dynamics of membrane proteins. Therefore the development of 
alternative structure determination methodologies is important to complement the structural 
picture provided by the well-established high-resolution techniques. 

Difficulties in the application of standard high-resolution methods for the 
characterization of the three-dimensional structure of membrane proteins, therefore call for 
the development of alternative approaches. Low-resolution structural data can be obtained 
with small angle X-ray scattering (SAXS) 4,5, circular dichroism (CD) 6-8 and atomic force 
microscopy (AFM) 9,10. Molecular dynamics simulations and other computational 
techniques reinforce alternative experimental methods, such as NMR spectroscopy 11-15 and 
electron microscopy (EM) 16,17. One of the alternative techniques is site-directed spin 
labeling (SDSL) electron spin resonance (ESR). This technique provides both a structural 
and dynamical characterization of the local conformations of a membrane protein (or any 
other protein) in its native environment 3,18-21. Site-directed spin labeling at multiple sites of 
proteins has been widely applied for characterization of protein structures 22-26. 

In this perspective my thesis presents a novel combination of site directed spin 
labeling ESR spectroscopy and molecular modeling that both describe restrictions to side-
chain conformational spaces, stable within the nanosecond time window of ESR 
spectroscopy. In this approach, multiple local data are treated simultaneously: the 
restrictions along protein sequence are used to navigate the optimization of a protein 
backbone conformation, which finally provides a family of equally-good global 
conformations of the protein chains (Figure 1). In this final chapter an overview will be 
provided of our latest progress in this field. 
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6.2 Combining experimental methods and modeling for 
protein structure characterization 

Already since the 50s, X-ray crystallography has been used to determine the three-
dimensional structure of proteins. In this approach, diffraction patterns are obtained that are 
converted into an electron density map, which serves as a basis to generate a model for the 
protein structure. In general, such an approach includes the following steps: a) acquisition 
of experimental data; b) conversion of data into structural constraints; c) building a 
structural model; d) optimization of the model, and e) estimation of the accuracy of the 
resulting structures. Coupling a high-resolution structure with data from techniques that 
describe dynamics and the incorporation of biological data may further help in 
understanding of protein function 27. 

In our case, the experimental data consist of a series of ESR spectra, which contain 
information about local structural restrictions and dynamical characteristics along the 
protein backbone. With the help of advanced spectrum analysis based on spectral modeling 
(simulation) and optimization of spectral model parameters, all the spectra are analyzed and 
the corresponding structural constraints are determined. The structural model of a protein, 
which has an atomic resolution, is parameterized with a set of backbone dihedral angle 
pairs, and in case of a membrane protein additional parameters describe the position and 
orientation of the protein with respect to the lipids. An optimization algorithm is then used 
to maximize the fit of the simulated restrictions to the experimentally determined 
constraints. Finally, the resulting family of favorable three-dimensional structures of the 
protein has to be checked with published data, or data about similar systems. In addition, 
the accuracy of the resulting structures may be estimated. 
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Figure 1. Overview of the SDSL-ESR approach for protein structure determination. A. Detection of 
the local restrictions from SDSL-ESR spectroscopic data. The method is illustrated for NTAIL-XD 
protein complex spin labeled at two typical mutant positions S491 and L496. The method is based on 
site-directed mutagenesis, measurements of ESR spectra at different temperatures (the experimental 
spectra are shown in blue, the simulated spectra are in red), GHOST condensation, and 
determination of the significant motional patterns for each mutant position. B. The structure 
determination approach is based on modeling of the conformational space of the amino acid side 
chains. This modeling is coupled to SDSL-ESR spectroscopy, and enhanced by structural 
optimization. Optimization starts with an initial structure, and finally comes up with a family of 
favorite structures. C. The determination of local restrictions is based on modeling of the 
conformational space. This method includes modeling of the protein structure (parameterized by 
pairs of backbone dihedral angles ϕ and ψ), modeling of conformational spaces of the side chains, 
and calculation of the conformational space restrictions. The method is illustrated for the NTAIL-XD 
protein complex spin labeled at two typical mutant positions L496 (at the interacting part of NTAIL-
XD complex) and V517 (at the disordered part of NTAIL) 28. 

6.3 Pushing the limits of SDSL-ESR spectroscopy  

Although the ultimate goal of this work is protein structure determination, a strong bias of the 
proposed method is towards SDSL-ESR spectroscopy. The modeling of the structure, the 
simulation of the conformational spaces and the structural optimization were developed to 
mimic SDLS-ESR, and to employ the SDLS-ESR experimental data as structural constraints. 
SDSL is an alternative biophysical technique that when compared to NMR and X-ray 
crystallography methods, provides a lower resolution and more qualitative structural data. It 
supplements the NMR technique with additional information about the dynamics of the 
protein backbone and side chains. It may also be capable of enhancing the ‘resolution’ as 
determined with X-ray crystallography. The spin label ESR experiments can be done at 
physiological conditions, at which the protein reveals its functionality, and in a native 
environment, what is especially important for the class of membrane proteins. Therefore, the 
method provides a unique opportunity to track conformational changes of proteins. In 
addition, the experiments could be conducted at low costs due to the small amounts of 
material needed 18. 

In contrast to isotope labeling studies that are used in NMR spectroscopy, which are 
essentially non-disturbing, site-directed labeling can introduce a protein modification when 
molecular probes are covalently added; thus this approach can bring about unwanted effects 
on the structure and function of the protein. For this reason, when using site-directed 
labeling approaches, it is preferable to avoid replacing crucial amino acid residues, for 
instance by selecting solvent-exposed loop regions of membrane proteins where structural 
perturbations due to the presence of labels is minimized (see for instance 29). In addition, 
site-directed labeling enables the use of a wide variety of probes, including environmental 
probes that allow monitoring further away from the protein backbone, structural probes for 
monitoring near the backbone, fluorescent, and spin probes. New labeling strategies based 
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on expanding the genetic code are being developed which will allow a position-specific 
incorporation of ‘unnatural’ labeled amino acids 30-33. Such an approach will permit the 
specific insertion of small tailor-made probes and will offer the maximum flexibility in the 
site-directed labeling methodology 34. 

In general, it is always preferable to use a range of sites for site-directed labeling via 
high-throughput mutagenic approaches 20,21,35 and, if possible, conduct mutant 
measurements at a series of temperatures 28. More complete spectroscopic information 
obviously leads to a better understanding of the structural principles and helps to explain 
the heterogeneity, typical for complex ESR spectra from proteins. 

6.3.1 Multi-component analysis and interpretation of SDSL-ESR data 

The understanding of the spectroscopic data from complex biological systems is also 
enhanced by applying a multi-component analysis of ESR spectra 36. In spin-labeled 
proteins there are several factors that can contribute to a multi-component character: 1) 
differences in local protein structure; 2) difference in local protein dynamics; 3) sample 
heterogeneity; 4) various dynamical regimes of spin label, possible immobilization due to 
interactions with the environment; 5) non-specific labeling.  

ESR spectra, composed of up to four spectral components can be simulated and the 
spectroscopic parameters can be extracted by spectral optimization (fitting of simulated 
spectra to the simulated one). Determination of the complexity of the system (the number 
of spectral components) as well as the structural and dynamical characteristics of each 
system component also require multiple spectral simulations as usually many combinations 
of component parameters may produce equally good results 36.  

Diversity is an important issue in approaches for multi-solution spectral simulation. 
Multiple diverse solutions provide a more complete description of a complex system, 
revealing possible conformational transitions. In our methodology, diversity and accuracy of 
the solutions are achieved with a hybrid evolutionary optimization algorithm (Chapter 2).  

The number of spectral components and the characteristics of the components are 
determined through filtering of multiple solutions and grouping them by recognition of 
motional patterns 36. A powerful analysis tool requires adequate background knowledge, so 
that unwanted effects can be eliminated (e.g., the amount of nonspecific labeling should be 
estimated). Thus, the wealth of ESR spectroscopic information requires a deep knowledge 
about the studied system to be able to assign and interpret each component in terms of 
structure and dynamics. 
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6.3.2 Detection of the local restrictions by SDSL-ESR spectroscopy 

In the experimental part of the methodology, site-directed mutagenesis is used to replace a 
strategically chosen amino acid residue with a cysteine. This cysteine is then targeted by a 
spin label 26,37. After protein purification, concentration, and – if needed – reconstitution 
into the membrane, the spin-labeled protein sample is prepared for ESR experiments (see 
Figure 1A). Taking into account that the spectral lineshape is highly sensitive to the 
motional properties of the spin label, the temperature has to be chosen in such a way that 
these motional properties will depend primarily on the protein structure, and not on the 
internal label properties. This condition imposes that the conformational space of a spin 
label attached to a protein should be fully exploited to be restricted by structural elements, 
such as the protein backbone, rotational space of neighboring amino acids, and lipids (in 
case of a membrane protein).  

At low temperature the conformational space is degenerated into a small number of 
low-energy conformational states (rotamers), which depend mostly on the minimization of 
the internal energy in accordance with the angular potentials of the rotamer. However, 
when the temperature increases, the side chains start to exploit their full rotational spaces, 
which at the same time become restricted due to steric overlap with the more rigid 
backbone and due to sharing physical space with the side chains of the neighboring amino 
acids. If the temperature is increased even further, the backbone can loose its stable 
conformation. This state of the backbone will lead to an undesired situation for our 
methodology and should be avoided. Therefore, the lifetime of the protein backbone should 
be long in comparison with the nanosecond time scale of the ESR experiment. Under this 
condition, slow backbone motions will not be reflected in the ESR spectral lineshape, 
which is then mainly determined by the fast motions of the spin label side chain. If the 
lifetime of a protein conformation is shorter than the ESR time window, both backbone and 
side chains will contribute to the ESR spectra, preventing the extraction of useful structural 
information from the lineshape. In such a case, the protein backbone dynamics might be 
slowed down by increasing the viscosity of the environment, e.g., with addition of sucrose, 
or by lowering the temperature. 

6.3.3 Cleaning of the motional patterns based on temperature series of 
SDSL-ESR measurements 

In any case, it is advantageous to measure ESR spectra at several temperatures. After 
acquiring a temperature series of the ESR spectra at each mutant position, spectral 
simulations and optimizations are used to extract the appropriate motional patterns 
(see Figure 1A) (Chapters 2 and 3). Spectral simulation and automatic optimization of the 
spectral parameters help to characterize the site-specific motional properties in a well-
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defined and high-throughput manner. However, the detected motional patterns should be 
checked for reliability before interpretation, or further usage for protein modeling and 
structural optimization. As ESR spectra are always noisy, it is impossible to analyze a 
single spectrum precisely. Thus, to increase the reliability of the analysis, ideally a suitable 
series of ESR spectra has to be measured, analyzed and interpreted jointly. Depending on 
the subject of research, an experimental series of different spin labels, various environments 
and/or chemical concentrations can be applied.  

However, performing measurements and comparing results at different temperatures 
is the most straightforward approach to clear artifacts in the spectral analysis. This cleaning 
can be easily done in terms of a so-called “bubble diagram” (Figure 1A and 2). In this 
diagram the average characteristic values of the chosen parameter (such as the free 
rotational space Ω, rotational diffusion D, etc.) are plotted against the parameter of the 
series (e.g., temperature, or mutant position). The bubble size is related to the spectral 
weight of the motional pattern, while the vertical bar at each bubble represents the second 
moment of a distribution of that particular motional pattern in the phase space. Such a 
presentation allows the determination of general trends of significant patterns in the data 
series, as well as recognizing the numerical and computational artifacts by applying the 
following criteria. Reliable domains should appear regularly and consistently in the series 
of the external variable, e.g., by having a locally monotonous temperature dependence of 
Ω. Further on, isolated solutions and solutions with a spectral weight below a certain 
threshold of a few percent are discarded. In addition, spectrally irrelevant solutions (e.g., 
that describe none of the spectral features) are deleted. In the final presentation only the 
patterns that meet all mentioned conditions are kept.  

To illustrate this “cleaning” strategy, a check of a typical temperature-dependent 
series of ESR measurements at a chosen mutant position, resulting in a series of motional 
patterns, is shown in Figure 2. Irregular temperature behavior (at 279, 281, and 283 K) 
indicates a deviation due to inappropriate filtering of the optimization results. It is expected 
that the temperature dependence of any parameter of our system is monotonous, unless it 
feels a major structural rearrangement, such as a phase transition. It is therefore expected 
that motional patterns evolve smoothly in some small temperature range. Therefore, 
deviating solutions are very likely to be caused by numerical artifacts. For the same reason, 
isolated solutions originating from either insignificant motional patterns with a small 
spectral weight, or inappropriate spectral components fitting noisy spectral details (e.g. 
small-weight patterns at temperatures 308, 310, 312 K), are also irrelevant (see Figure 2A). 
To increase the accuracy of the structure determination, all these inappropriate solutions 
should be systematically removed. 
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Figure 2. An example of motional pattern cleaning. A temperature-dependent series of bubble 
diagrams at each spin-labeled protein site (an example of a bubble diagram is shown for the NTAIL-
XD protein complex spin labeled at position S491 28) is used to detect insignificant and/or false 
solutions. High values of Ω (between 0.7 and 1) correspond to (nearly) unrestricted motional patterns 
of the spin label, whereas low values (between 0 and 0.25) imply very high restrictions. Adjustment of 
the condensation procedure allows achieving consistency of motional patterns in the temperature 
series (see the motional patterns at 279, 281, 283 K marked with a dashed oval). Removing spectral 
components with a low intensity, or components that fit noise in the tails in the ESR spectrum (see 
motional patterns at 308, 310, 312 K marked with dashed ovals) allows focusing on the most 
important meaningful motional patterns. For illustration, the motional patterns at 308, 310, 312 K 
are numbered 1-3 and the corresponding ESR spectral components of the simulated 310 K spectrum 
are presented on the right. 

Temperature dependencies can also be used to verify the main assumption in modeling 
the conformational space, i.e., that the backbone motion should be slow on the ESR time 
scale, whereas the motion of the side chains should be fast. This effect can be diagnosed by a 
sudden transition in the free rotational space as a function of temperature. In such a case, ESR 
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experiments at several temperatures are needed to identify whether the protein is in a 
permanent disordered state, or if the lifetime of the backbone conformation is too short. 

Finally, the complexity of the motional patterns should also be taken into account. 
More than one reliable motional pattern at a site obviously means that the spin label feels 
different restrictions to its wobbling space. For example, a completely unrestricted motional 
pattern could indicate nonspecific labeling at unrestricted positions in the protein (i.e., the 
terminal ends). However, any situation where more than one motional pattern is revealed 
with a significant contribution means that there are coexisting local protein conformations. 
In the protein modeling any of these patterns can be used, and appropriate structures can be 
derived accordingly. 

In this thesis, the SDSL-ESR method was used in combination with multi-
component analysis to study light-harvesting membrane protein complex CP29. The results 
of multi-component analysis of ESR data permit to trace the structural organization of the 
long N-terminal domain of CP29 (Chapter 3). 

6.4 Enhancement of conformational space modeling for 
the detection of the local restrictions 

The protein backbone structure is parameterized by the dihedral angles ϕi and ψi at each 
i-th amino acid residue, following by the attachment of the amino acid side chains to the 
backbone (Figure 1C) (Chapter 4). It is assumed that atomic structures of the spin label 
and amino acid residues can be constructed using an approximation of fixed bonds 
lengths and bonds angles 38, based on previously reported values 39-41. In the modeling, 
the unrestricted conformational spaces of all amino acid side chains are attached to their 
respective backbone Cα atoms, which are assumed to be fixed in space. The unrestricted 
conformational space is a result of the rotations of the side chain of an amino acid, or of a 
spin label around single bonds. The side chain is rotated around its single bonds in 
different steps in accordance with the type of amino acid residue (or spin label). The 
steps in these rotations are derived by taking into account that the most computationally 
demanding step in conformational space analysis is the calculation of the restrictions of 
the conformational space. This calculation involves checking of the overlap between side 
chains, which quadratically depends on the number of rotamers in the conformational 
space. Therefore, it is clear that the number of rotamers has to be reduced as much as 
possible, however, by maintaining a certain degree of accuracy. 
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6.4.1 Sampling of side chain conformational rotamers  

Since ESR spectroscopy is very sensitive to the available space of the fast rotational motion 
of the spin label attached to the protein, the rotational conformational space of the side 
chain can be taken as the most strategic unit in our protein modeling (see Chapter 4). In 
SDSL-ESR spectroscopy a protein is labeled at a specific site with a spin label of a size 
slightly larger than the size of the largest amino acid residues. Together with high-
temperature conditions, this guarantees that the fully-exploited conformational space of the 
amino acid side chain becomes restricted due to steric overlap with the local backbone 
conformation, and due to the conformational spaces of the neighboring amino acids. In 
addition, the surrounding phospholipids (for membrane proteins) affect the conformational 
space of the spin label. To employ these restrictions for protein structure determination, the 
conformational space has to be measured experimentally and simulated at the same time 
and then compared. In this respect, it is important to note that the ESR experiment is 
insensitive to the exact atomic coordinates, but very sensitive to the motional anisotropy of 
the nitroxide group. Therefore there is no need for a precise calculation of a side chain 
conformation. Instead, the relative probability of side chain conformations in the 
conformational space of the spin label has to be determined. 

6.4.2 Restrictive effect of the lipids on side chain conformations 

A calculation of the restrictive effects should also take into account the average space-
sharing effects of all surrounding wobbling chains from the neighboring amino acid side 
chains of the protein(s) and alkyl chains of the lipids. Two possible views about lipid effect 
on protein side chains: 1) high mobility of lipids (characterized by fluidity/viscosity) and 
conformational space sharing; against 2) lipid rigidity according to shell model and severe 
immobilization of the lipid and protein chains. From one hand, lipids fluidity is in favor of 
explaining protein-protein interactions between integral proteins. On the other hand, the 
contact between integral membrane proteins and lipids must be very tight to maintain the 
seal of the membrane as a permeability barrier 42.  

On the contrary to the restriction calculations that arise from the backbone and side 
chains, in case of a membrane environment the steric overlapping effect cannot be derived 
explicitly by calculating the overlap of atoms and groups. This arises, because the position 
of the atoms of the lipids is not precisely known. Therefore, it is clear that the lipid effect 
has to be introduced in the calculations in a more phenomenological way. In the simplest 
approximation the effect of the alkyl chains of the phospholipids should take into account 
following assumptions 43: a) side chain conformations, which stretch out from the main 
body of the protein perpendicular to the lipids, should be restricted by the highest extent; b) 
there are minimal restrictions in case of a parallel alignment to the membrane normal; c) the 
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lipids ordering is effective as soon as there is any non-zero angle between the side chain of 
a spin label and a lipid alkyl chain, meaning that the derivative of the lipid effect should be 
linear when ϑ angle approaches zero; d) perpendicular and near-perpendicular 
conformations should be restricted by approximately a similar extent, meaning that the 
derivative of the lipid effect should be zero, when the angle approaches π/2; e) the 
amplitude of lipid effect on the conformational space of the side chains can be deduced 
from the effect of electron density profile (static restriction, highest at the membrane 
surface, 44) as well as from the effect of lipid chain rotational conformational space 
(dynamic restrictions, increasing towards the centre of membrane 45). All these 
approximations can be merged into a probability function for the lipid effect (Chapter 5, 
Eq. 3). This description of the lipid effect is in agreement with results of recent molecular 
dynamics simulations studies, which shows that aromatic, polar and charged amino acid 
side chains tend to orient along the membrane normal 46,47. As can be seen from Eq. 3 
(Chapter 5), we assume that the lipid effect is depth independent. This is reasonable, as the 
two restrictive effects from virtually fixed headgroups and more flexible tails sum almost to 
a constant effect at different membrane depths 44,45. 

6.5 Structural optimization 

The comparison of the simulated values for Ωsim with the normalized free rotational space 
Ωexp extracted from SDSL-ESR experimental data 21,43 is used to govern an optimization 
algorithm, which tunes the secondary structure of the protein and the parameters of its relative 
orientation and position (Figure 1B) (see also Chapter 5 for details). 

6.5.1 Structural optimization algorithm  

A single run of optimization (Figure 3), which counts for 200 generations, starts with the 
initialization of a protein structure (setting the pairs of backbone dihedral angles {ϕi, ψi} 
and the relative orientation and position of the protein in the system) (Table 1, Figure 4), as 
well as the initialization of the optimization parameters and constants (such as selection, 
mutation, crossover, elite, and shaking). In each generation, the optimization parameters 
and the dihedral angles of the protein backbone are updated first (these parameters usually 
change with run generation number Ngen). Then the current structure of the protein system is 
modified by internal operators (modification of the secondary structure of a protein via a 
mutation and crossover operators applied to the backbone dihedral angles) and external 
operators (modification of the position and orientation of the protein towards the 
membrane, or towards the other protein). The external operators also include a rotation of 
the protein around its long axis, given by angle ϕ (relevant for helical chains, see Figure 4). 
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Figure 3. Scheme of a single run of the algorithm for protein structure optimization. The algorithm is 
split into several functional parts: internal structure optimization operators (red box), external 
structure optimization operators (yellow box), restrictions calculation and data fitting (orange box), 
decision making part (green box). The algorithm includes modeling of the lipid effect, as is needed in 
case of membrane proteins 48. The run generation number is Ngen. Nmax is the maximum number of 
generations, typically 100. 

Table 1 gives the parameters of the protein-lipid model, or protein complex model 
that can be optimized. At several stages in the optimization procedure, the protein structure 
in the system is checked for steric clashes. In case of internal steric overlap, the algorithm 
returns and makes another try with the current operator. There is a maximum number of 
clashed structures allowed in one generation. If this number is achieved the current 
problematic structure is replaced with the initial structure to protect the algorithm from 
going into a dead end. After the new structure is generated, the local restrictions at the 
mutant positions are calculated, and the obtained restriction profile Ωsim is compared with 
the experimental restriction profile Ωexp by a goodness of fit (Eq. 12, Chapter 5). 
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Table 1. Internal and external optimization parameters for different protein systems. 

Parameter Unit Description 
Internal parameters 
{ϕi, ψi} ° Pairs of dihedral angles (the first and last angles, ϕ1 and ψN, are not defined) 
ϕ ° Rotational angle (rotation of the protein around the long axis) 
External parameters – membrane proteins 
tmstart - Starting position of the transmembrane region of the protein 
tmend - End position of the transmembrane region of the protein 
nref - Reference residue usually in the centre of the protein 
D Å Steric thickness of the membrane 
θ ° Tilt angle of the protein with respect to the membrane normal 
dshift Å Shift of the protein in the bilayer along the membrane normal (used for the fine-

tuning of the transmembrane position of the protein) 
External parameters – protein complex 
∆x Å Displacement vector of the protein relative to the partner 
A ° Orientation tensor of the protein relative to the partner 

 
Figure 4. Parameters for the protein structure optimization. A. Relative position and orientation of 
membrane-embedded M13 coat protein 48. The protein is shown with the conformational spaces of the 
amino acid side chains and spin label. The starting, tmstart and ending, tmend residues of the 
transmembrane part of the protein as well as a reference nref residue in the centre of the 
transmembrane domain are highlighted. The yellow planes indicate the restrictive region of the lipid 
bilayer. B. NTAIL protein, presented by backbone atoms relative to the partner protein XD 28. Both 
protein systems are parameterized according to Table 1. 
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does not outperform the χ2
best, it may still become the parent for the new generation, if the 

Metropolis criterion 49 is satisfied. In case the new structure is rejected, the parent stays the 
same as in the previous generation. However, with some probability (depending on the 
number of consequent unsuccessful generations) the current structure is replaced with the 
one that corresponds to χ2

best to let the algorithm to produce good-fit structures still within 
the current generation. Finally, each structure with calculated restrictions is split into short 
subsequences with the corresponding goodness of fit (fitting corresponding part of the 
experimental data). Any successful subsequence updates the elite database, which is used 
later for elitist crossover. The algorithm repeats this main loop until the maximal number of 
generations is reached. The outcome of the optimization is always a family of best-fit 
protein structures, which agree with the experimental SDSL-ESR data. Note that in the case 
of a membrane-embedded protein the protein structures are found relative to the 
membrane 48. 

In case of larger proteins, or membrane proteins that span the membrane several 
times, the protein backbone can be split into a set of protein domains, separated by loosely 
structured loops. The assignment of loosely structured loops and terminal ends could be 
carried out via the normalized rotational diffusion being much higher in the unstructured 
parts as compared to the structured parts, such as transmembrane domains 20,21,48. 

6.5.2 Future improvement of structural optimization 

Our algorithm of structural optimization, which is based on modification of the dihedral 
angles, blindly samples a high-dimensional conformational space of the protein. Similar to 
protein folding in nature, where the protein naturally finds its way through the 
conformational space, the optimization should also be equipped with mechanisms that help 
to reduce the huge number of conformational possibilities. 

To be able to get deeper insights into the three-dimensional protein structure, one 
might take into account any available information about the evolution of the protein from a 
linear sequence of amino acid residues to folding and post-folding modifications. In the 
first step, the local secondary structure is formed, which is guided by hydrogen bonding. At 
the same time protein folding starts (spontaneous collapse into a compact state) mediated 
by hydrophobic interactions among nonpolar residues. This is followed by longer-range 
interactions, which stabilize the tertiary structure bring together structure chains, e.g., two 
α-helices that come together, β-strands organize into a β-sheet or β-barrel. In addition some 
proteins need the assistance from specialized proteins (chaperones) while folding. Others 
require post folding modifications to obtain the native functionality. This information can 
be used when improving the protein structure optimization 50,51. 

Thermodynamically, the folding process can be viewed as a kind of free-energy 
funnel 52,53. The unfolded states are characterized by a high degree of conformational 
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entropy and relatively high free energy. As folding proceeds, the narrowing of the funnel 
represents a decrease in the number of conformations. In protein folding the virtual 
“surface” of the energy landscape makes it possible that the alpine skier coming from the 
top of the summit (an initial disordered structural conformation of the proteins) finds his 
way through the mountain terrain and comes to the finish at the proper place (native 
functional structure of the protein). 

From one hand, an energy-based calculation of the intermediate conformational states, 
including checking for possible stabilizing interactions (i.e., hydrogen bonding), could help to 
reject unfavorable conformations. From the other hand, the efficiency of the optimization 
search may be improved by the introduction of known secondary structure motifs (α-helix, 
310 helix, β-sheet, turns and loops etc.) based on primary sequence analysis and secondary 
structure predictions. According to primary sequence analysis, the protein could be split into 
regions of certain secondary structures and each region could be described by a set of 
parameters (e.g., thickness of the helix/residues per turn, the pitch of the helix 54) including 
the angles, which would describe the relative orientation of these protein parts one with 
respect to each other. This would end up with a smaller number of optimization parameters 
than in case of structure parameterization via dihedral angles. The dihedral angles could be 
anyway recalculated from the structure. Such a reduced number of optimization parameters 
has been implemented already, e.g., in a FRET-data-based model 55-57. 

6.6 Computational demands 

Our method requires solving of the inverse problem, both in the GHOST analysis, as well 
as in the protein structure optimization. Generally, this means that these procedures are very 
time consuming. Therefore, in our work a lot of effort was spent on speeding up the 
numeric calculations. Since the computational demands of the modeling of the 
conformational space strongly depends on the number of dihedral rotations, we optimized 
the generation of the conformational space by discretizing the experimentally derived 
probability histograms of the side chain rotamer angles 58-63 of each single bond rotation for 
each type of amino acid side chain. The optimization efficiency was further increased 
especially by the introduction of a special operator that keeps track of successful structural 
segments (that successfully fit the corresponding segment of the SDSL-ESR-based 
restriction profile), as well as by the introduction of an operator for local structural tuning. 
Currently the characterization of a 50-amino acid membrane protein with 27 spin label 
positions 48 takes about 5 weeks of CPU time on a small 20-core (2.3 GHz) computer 
cluster. One week was needed to analyze SDSL-ESR data and to extract the corresponding 
motional GHOST patterns. The GHOST analysis was then used in protein structure 
optimization, which took another four weeks of CPU time to obtain 1000 best-fit structures 
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by evolving through approximately 200,000 protein structures. The computational demand 
is roughly linearly dependent on the protein size. Similarly, the methodology also allows a 
linear decrease of computational time by increasing the computational power. It should be 
noted that protein structure optimization is practically inaccessible, if molecular dynamics 
simulations would be applied to derive the restrictions of the conformational space even 
with a much larger computer cluster size. This impracticability arises, because the 
molecular dynamics simulations should reach an ESR averaging time of a few nanoseconds 
for each of the structure scanned. 

6.7 Complementarity to other methods 

Our method is comparable to the distance geometry approach employed in two-dimensional 
solution NMR spectroscopy that also results in a family of structures 13,64. However, the 
number of restraints used in the modeling in our method (free rotational space and 
rotational diffusion) depends on the number of available spin-labeled protein mutants. Such 
a data set is smaller than the data set available from NMR spectroscopy (nuclear 
Overhauser effect, one- and three-bond J-coupling, carbon and proton chemical shift, and 
rotational diffusion anisotropy) 65. The number of restraints could be increased by 
producing more spin-labeled protein mutants, or by using additional structural restraints 
from other low-resolution methods (e.g., distance measurements by fluorescence 
spectroscopy or dual-spin label SDSL-ESR, global conformation constraints by small angle 
X-ray scattering (SAXS) and circular dichroism (CD)). 

Even though ESR spectroscopy is insensitive to the exact atomic coordinates, the 
sensitivity to the anisotropy of the local conformational space of the spin label and the 
corresponding modeling of the conformational space allow the determination of the 
backbone fold with almost atomic resolution. However, there is no structural information 
about individual side chain conformations. Instead, the protein can be represented as a 
space needed for all the amino acid side chains to wobble. The ability to track the protein 
structure and dynamics in a native environment and at physiological temperature is one of 
the great advantages of the proposed method. Another advantage is the higher sensitivity of 
ESR when compared to NMR, which means that much lower concentrations of protein 
samples are needed to perform the experiment 3. 

6.8 General results of the application of SDSL-ESR, 
structural modeling and optimization to proteins 

Although a limited number of single mutant spin label positions is able to provide structure 
information about a protein, a better approach (like one that employs protein structure 
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modeling) will be needed to fully characterize the protein structure. Our simulation tests on 
synthetic oligopeptides (Chapter 5) as well as the structural optimization of M13 coat 
protein in lipid bilayers (Chapter 5) show that a typical nitroxide spin label is capable to 
feel local conformational effects up to five neighboring amino acids, in case of a helical 
conformation of the protein. However, in general a large number of spin-labeled protein 
mutants might be desired, to narrow the uncertainty in the structure calculations. As a rough 
estimate, every two or three amino acid positions should be sufficient for characterization a 
high-quality secondary structure. 

What could contribute and enhance the approach: 
• Calibrate the approach of the calculation of the local restrictions: carry out SDSL-ESR 

experiments and modeling on known water-soluble proteins, of which a high-
resolution structure is known, or on single α-helical transmembrane proteins in lipid 
systems. 

• Employ more structural constraints from SDSL-ESR: use the spin label motional 
cone angles ϑ and ϕ separately (not combined in Ω). 

• Optimization can be enhanced by taking into account structure-stabilizing weak 
interactions, by calculation of the free energy of conformations, and removing 
unfavorable global conformations from the search. 

• Using known secondary structure motifs, and in general, make use of parameter 
sets that are better than a list of backbone dihedral angles pairs. 

• Implementation of the new knowledge-based optimization operators. 
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Summary 

Site-directed spin labeling (SDSL) electron spin resonance (ESR) spectroscopy is a 
relatively new biophysical tool for obtaining structural information about proteins. This 
thesis presents a novel approach, based on powerful spectral analysis techniques (multi-
component spectral simulations and evolutionary optimizations of ESR spectra) and 
modeling of the protein structure by calculating the restrictions of the conformational space 
of the attached spin label.  

First, the feasibility of the ESR spectral analysis was enhanced by speeding-up the 
spectrum optimization and by automation of the analysis routines to enable the handling of 
large sets of spectroscopic data (e.g., for the joint analysis of SDSL-ESR spectra from 
multiple sites of a spin-labeled protein). According to the testing examples a speed-up 
factor of 5-7 was achieved. 

Secondly, SDSL-ESR was used to study the topology of the long N-terminal domain 
of the photosynthetic light-harvesting complex CP29. Wild-type protein containing a single 
cysteine at position 108 and nine single cysteine mutants were produced, allowing to label 
different parts of the domain with a nitroxide spin label. In all cases the apoproteins were 
either solubilized in detergent, or they were reconstituted with their native pigments in 
vitro. The spin label ESR spectra were analyzed in terms of a multi-component spectral 
simulation approach. These results permit to trace the structural organization of the long N-
terminal domain of CP29 leading to a structural model for its N-terminal domain. 

Thirdly, we proposed a novel way to translate the local structural constraints gained 
by SDSL-ESR data into a low-resolution structure of a protein by simulating the 
restrictions of the local conformational spaces of the spin label attached at different protein 
sites along the primary structure of the membrane-embedded protein. The proposed 
structural model takes into account the restricting effect of the protein backbone, amino 
acid side chains and lipid environment. We tested the sensitivity of this approach for 
artificial oligopeptides and then for membrane-embedded M13 major coat protein 
decorated with a limited number of strategically placed spin labels by employing high-
throughput site-directed mutagenesis. We found a reasonably good agreement of the 
simulated and the experimental data taking a protein conformation close to an α-helix. 

Finally, by using an optimization algorithm we optimized the parameters of the 
protein-lipid model by improving the fit of the simulation data to the experimental 
conformational space data. The outcome of the optimization was a family of best-fit 
structures of membrane-embedded M13 protein, which not only agree with the available 
SDSL-ESR data, but also was consistent with a recent model based on site-directed 
fluorescence labeling. 

Therefore, the present method provides a challenging starting point for the 
development of a powerful methodology for the protein structure characterization, an 
alternative approach to conventional techniques. 
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