

Microarray Center

STATISTICS IN USE: Basic Statistical Methods and Tools

Methods, Tools and Applications

Petr V. Nazarov

Microarray Center, CRP-Santé, Luxembourg

etr.nazarov@crp-sante.lu

OUTLINE

I. Introduction

- Statistical questions
- Basic notation and numerical measures
- Random variables and their distributions

II. Methods and Examples

- Detection the outliers
- Interval estimation for the mean
- Comparison of the means of two samples
- Interval estimation for the variance
- Test of goodness of fit (model testing)
- Analysis of variance, ANOVA
- Principal component analysis, PCA
- Effect normalization

INTRODUCTION

Statistical Questions

The number of living cells measured in 5 independent experiments are 1520, 1231, 2102, 1867, 1625

What is the *interval estimation* for the real average number of living cells?

The number of living cells measured in 3 independent experiments for 2 conditions are A: 1520, 1231, 1425, B: 2102, 1867, 1625

Are the average numbers of living cells significantly different for A and B?

The proportions for 3 "classes" of patients with and without treatment are:

The behaviour of a cell line is studied, being affected by several factors (e.g. concentration, time of treatment, temperature).

	Concentration					
Time	0.1	0.2	0.5	1	2	
1	21.11	23.74	22.19	24.45	24.32	
2	24.02	25.19	25.44	26.59	27.43	
5	25.43	25.58	25.30	24.74	28.59	
10	22.48	22.84	24.01	26.04	26.60	
30	25.77	26.52	25.43	25.39	30.75	
60	28.76	31.08	28.97	28.74	34.96	

Which of the factors effect the behavior more and are more important?

INTRODUCTION

Basic notation and numerical measures

Let the measured quantity be x. This x can be also referred as a random variable.

Numerical measures:

- Mean μ , *m* characteristic of the position (unstable to outliers)
- Trimmed mean characteristic of the position (stable to outliers)
- Median med robust characteristic of the position (but less precise)
- Variance σ^2 , s^2 the characteristic of the scale (squared)
- Standard deviation σ , s the characteristic of the scale (linear)
- Inter-quartile range IRQ robust characteristic of the scale (but less precise)
- Correlation r characteristic of linear dependency of 2 data sets

INTRODUCTION

Random variables can be discrete or continues.

Examples of distributions for continues

METHODS AND APPLICATIONS

Detection of outliers

Chebyshev's theorem

• For any kind of distribution at least $1-z^{-2}$ of the data values must be within z standard deviations from the mean ($\mu \pm z\sigma$), where z is any number > 1.

- At least 75% of data have z-score < 2
 At least 20% of data have z-score < 2
- At least 89% of data have z-score < 3</p>
- At least 94% of data have z-score < 4</p>
- At least 96% of data have z-score < 5</p>

"Rule of thumb":

If $|z_i| > 3$ (for symmetrical distr.) or $|z_i| > 5$ (for skewed distr.) then x_i is an outlier.

	Number of cells						
503	516	529	529	507			
589	547	515	490	484			
491	154	215	536	508			
532	546	572	517	499			
455	558	552	462	554			
469	500	588	516	485			
506	507	523	567	533			
512	529	534	523	581			
543	577	573	526	471			
478	495	517	473	548			

Example

z-score						
-0.08	0.10	0.27	0.27	-0.02		
1.07	0.51	0.08	-0.25	-0.33		
-0.24	-4.73	-3.92	0.36	-0.01		
0.31	0.49	0.84	0.11	-0.12		
-0.72	0.66	0.58	-0.62	0.61		
-0.53	-0.11	1.05	0.09	-0.32		
-0.04	-0.02	0.19	0.78	0.32		
0.04	0.27	0.34	0.19	0.97		
0.46	0.91	0.86	0.24	-0.51		
-0.41	-0.18	0.12	-0.48	0.53		

INTERVAL ESTIMATIONS

Interval estimations for mean and proportion

INTERVAL ESTIMATIONS

Statistics used for means and proportions

- In the case of known population variance σ^2 (rare!): z-statistics (Gaussian)
- In the case of unknown population variance: t-statistics (Student's)
- Population proportion: z-statistics

INTERVAL ESTIMATIONS

Population mean

Interval estimation for the population mean

Let us define α as "error probability", then 1- α is called *confidence interval*. For example let α =0.05

$$m = \mu \pm e_{a/2} \iff \mu = m \pm e_{a/2}$$

In the case of unknown σ^2 the interval is defined as:

$$\mu = m \pm t_{\alpha/2}^{df = n-1} \frac{s}{\sqrt{n}}$$

An example in Excel

x	mean(x)	е
1.421233	1.463722	0.371382
1.748418		
1.081124		
1.112433		
1.985844		
1.433279		

NOTE: there is α value in TINV instead $\alpha/2$.

#

1

2

3

4

5

6

7

8 9

INTERVAL ESTIMATIONS

Population proportion

• Interval estimation for the population proportion (π)

Again α is "error probability", 1- α is *confidence interval*. Let α =0.05

Usually z-statistics is used. But the requirement must be obeyed \rightarrow

$$\Pi = P \pm z_{\alpha/2} \sqrt{\frac{P(1-P)}{n}}$$

 $\Pi = P \pm e_{a/2}$

HYPOTHESIS TESTING

Hypothesis about population mean

Standard hypotheses look like:

HYPOTHESIS TESTING

Hypothesis about population mean

Solution

HYPOTHESIS TESTING

Excel example: hypothesis about population mean

Number of living cells in 5 wells under some conditions are given in the table, with average value of 4705. In a reference literature source authors clamed a mean quantity of 5000 living cells under the same conditions.

Question: is our experiment significantly different from the one performed in a reference article?

# well	Living cells
1	5128
2	4806
3	5037
4	4231
5	4322

m= 4704.8 s= 409.49

Lower Tail	$t = \frac{m - \mu_0}{m - \mu_0} = \frac{4704.8 - 5000}{m - 1.61} = -1.61$
H ₀ : <i>µ</i> ≥ 5000	<u>s</u> 409.5
H _a : μ < 5000	\sim
	p-value ≥ α /
	α p-value t_{α} t

The null-hypothesis H₀ cannot be rejected: no significant difference between reference and actual experiments

	-	
X		
5128	m=	4704.8
4806	S=	409.4871
5037	mu0=	5000
4231	t=	-1.61199
4322	p-value=	0.091129

HYPOTHESIS TESTING

Testing hypothesis about means of two population

One way to compare means:

And another... :

Excel \rightarrow Tools \rightarrow Data Analysis

Select for example t-Test for unequal variances

Α	В
1520	2102
1231	1867
1425	1625

t-Test: Two-Sample Assuming Unequal Variances

	Variable 1	Variable 2
Mean	1392	1864.667
Variance	21697	56886.33
Observations	3	3
Hypothesized Mea	0	
df	3	
t Stat	-2.920454	
P(T<=t) one-tail	0.030737	< 0.05
t Critical one-tail	2.353363	
P(T<=t) two-tail	0.061474	> 0.05
t Critical two-tail	3.182446	

NOTE: other (one tail) hypothesis can be applied as well, depending on the question.

HYPOTHESIS TESTING

Non-parametric method: U-test

Wilcoxon rank-sum test, also known as 'Mann-Whitney U' checks whether data for two sets come from the same distribution.

- Non-parametric methods do not put restrictions on the distribution of the data.
- Specifically the U-test can be used for ordinal data (e.g. "G", "S", "B" medals in sport)
- Robust to outliers
- Attention: U-test compares distributions, not specifically medians (as addressed usually)

Example in R

R programming language originally was developed to solve statistical tasks, it has much wider possibilities and consistency in comparison to Excel Data Analysis.

Let us apply U-test to the same data as t-test:

Α	В
1520	2102
1231	1867
1425	1625

```
> x1=c(1520,1231,1425)
> x2=c(2102,1867,1625)
> wilcox.test(x1,x2)
Wilcoxon rank sum test
data: x1 and x2
W = 0, p-value = 0.1
alternative hypothesis: true location shift is not equal to 0
> wilcox.test(x1,x2, alternative="less")
Wilcoxon rank sum test
data: x1 and x2
W = 0, p-value = 0.05
alternative hypothesis: true location shift is less than 0
```


INFERENCE ABOUT VARIANCES

Interval estimation for the sample variance, χ^2 statistics

If x is a random variable, then s^2 is a random variable too. The interval estimation for it is build using chi-square statistics (χ^2).

Example in Excel

TEST OF GOODNESS OF FIT

Application of χ^2 statistics for model testing

The proportions for 3 "classes" of patients with and without treatment are:

Goodness of fit hypothesis is always one tail!

Build the model of the distribution and calculate
 expected frequencies using control group of patients.
 Each expected frequency must be ≥ 5.

Category	Control frequenc.	Distrib. model	Expected freq., e	Experim. freq.,f
А	28	0.28	56	42
В	34	0.34	68	64
С	38	0.38	76	94
Sum	100	1	200	200

• Calculate test χ^2 statistics using equation:

 χ^2 degree of freedom = *k*-1

Category	(f-e)2/e		
А	3.500		
В	0.235		
С	4.263		
Chi2	7.998		
p-value	0.01833		

Exactly the same approach can be applied for testing the independence. Difference: expected frequencies are calculated on all the data, instead of "control set".

4.69

1.99 2.45 1.93

3.15

3.09

FTEST

p-value= 0.040907

HYPOTHESIS TESTING

Hypothesis testing for variances, F-statistics

p-value2 = **FTEST**(A2:A11;B2:B11)

ANOVA

ANOVA: first glance

◆ The behaviour of a cell line is studied, being affected by several factors (e.g. concentration, time of treatment, temperature).

		Concentration					
Т	Time	0.1	0.2	0.5	1	2	
	1	21.11	23.74	22.19	24.45	24.32	
	2	24.02	25.19	25.44	26.59	27.43	
	5	25.43	25.58	25.30	24.74	28.59	
	10	22.48	22.84	24.01	26.04	26.60	
	30	25.77	26.52	25.43	25.39	30.75	
	60	28.76	31.08	28.97	28.74	34.96	
nich of	i the	e fac	tors	effe	ct th	e be	havior mo

The answer to this question can be given by the Analysis of Variance (ANOVA).

There are several explanation how does ANOVA works. The one related to within/between treatment distributions is given below.

Assume that we have data recorded under 3 effects or *treatments* (red or green or blue)

No significant effect.

Presence of a significant effect.

ANOVA

Application

 The behaviour of a cell line is studied, being affected by several factors (e.g. concentration, time of treatment, temperature).

	Concentration						
Time	0.1	0.2	0.5	1	2		
1	21.11	23.74	22.19	24.45	24.32		
2	24.02	25.19	25.44	26.59	27.43		
5	25.43	25.58	25.30	24.74	28.59		
10	22.48	22.84	24.01	26.04	26.60		
30	25.77	26.52	25.43	25.39	30.75		
60	28.76	31.08	28.97	28.74	34.96		

Which of the factors effect the behavior more and are more important?

If the number of factors is 1 or 2, Excel is an excellent tool for ANOVA.

For more complex analysis (3 and more factors) other software tools should be used, including R and Partek[®].

SUMMARY	Count	Sum	Average	Variance		
Row 1	5	115.81	23.162	2.12237		
Row 2	5	128.67	25.734	1.73233		
Row 3	5	129.64	25.928	2.31527		
Row 4	5	121.97	24.394	3.45038		
Row 5	5	133.86	26.772	5.15072		
Row 6	5	152.51	30.502	7.17352		
Column 1	6	147.57	24.595	7.27483		
Column 2	6	154.95	25.825	8.36375		
Column 3	6	151.34	25.22333	4.961267		
Column 4	6	155.95	25.99167	2.443817		
Column 5	6	172.65	28.775	13.71515		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Rows	157.6653	5	31.53306	24.13668	7.77E-08	2.71089
Columns	61.64961	4	15.4124	11.79728	4.38E-05	2.866081
Error	26.12875	20	1.306437			
Total	245 4437	29				

40

585

REGRESSION

Simple linear regression

Multiple linear regression

$$y(x_1,...,x_k) = \beta_1 x_1 + \ldots + \beta_k x_k + \beta_0 + \varepsilon$$

Linear regression (simple and multiple) is equivalent of ANOVA!

See the example: \downarrow

 Building a regression means finding and tuning the model to explain the behaviour of the data

Model for a simple linear regression:

• b_1 and b_0 are random variables estimating β_1 and β_0 . Interval estimations

REGRESSION

Simple linear regression in Excel

♦ Use Excel \rightarrow Tools \rightarrow Data Analysis \rightarrow Regression.

PRINCIPLE COMPONENT ANALYSIS

PCA basics

Principal component analysis (PCA) is a vector space transform often used to reduce multidimensional data sets to lower dimensions for analysis. It selects the coordinates along which the variation of the data is bigger.

Example for 2D case: for the simplicity let us consider 2 parametric situation both in terms of data and resulting PCA.

Instead of using 2 "natural" parameters for the classification, we can use the first component!

PRINCIPLE COMPONENT ANALYSIS

PCA in Partek Genomic Suite

 Transcriptomic profile of a sample contains thousands of genes, i.e. thousands of coordinates/parameters.

PCA is extremely useful for initial data analysis in transcriptomics, as it allows to depict thousands of parameters just in 2 or 3 dimension space.

3 factors can influence the distribution of the variability:

- Substance
- Manip (bio replicate)
- Dye swap

NORMALIZATION

An example of correction of the batch-effect

 ◆ Normalization can be considered as a correction for unwanted and artificial effects, e.g. batch effect, day effect, mood effect ☺ ☺.

If effects are believed to be linear, the normalization can be performed using ANOVA or (equivalently) multiple regression.

$$y(x_1, x_2) = \beta_1 x_1 + \beta_2 x_2 + \beta_0 + \varepsilon$$

 $y^*(x_1) = y$

$$y^*(x_1) = y(x_1, x_2) - b_2 x_2 = \beta_1 x_1 + \beta_0 + \varepsilon^*$$

