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INTRODUCTION

Statistical Questions

4 The number of living cells measured in 5
independent experiments are 1520, 1231,
2102, 1867, 1625

What is the interval estimation for the real
average number of living cells?

4 The number of living cells measured in 3
independent experiments for 2 conditions are
A: 1520, 1231, 1425,

B: 2102, 1867, 1625

Are the average numbers of living cells
significantly different for A and B?

4 The proportions for 3 “classes” of patients
with and without treatment are:

Control

Experimental

nCZ(.

Are the proportions significantly different
in control and experimental groups?

n.=100

4 The behaviour of a cell line is studied,
being affected by several factors (e.g. con-
centration, time of treatment, temperature).

Concentration

Time| 0.1 0.2 05 1 2
1 [21.11 23.74 22.19 24.45 24.32
2 124.02 25.19 25.44 26.59 27.43
5 125.43 25.58 25.30 24.74 28.59
10 |22.48 22.84 24.01 26.04 26.60
30 |25.77 26.52 25.43 25.39 30.75
60 |28.76 31.08 28.97 28.74 34.96

Which of the factors effect the behavior more
and are more important?
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Basic notation and numerical measures

Let the measured quantity be x. This x can be also referred as a random variable.

POPULATION SAMPLE

m — mean
S2 — variance

n — number of
elements

L —mean
07 — variance

N — number of elements
(usually N=<)

Numerical measures:

4 Mean 4, m — characteristic of the position (unstable to outliers)

4 Trimmed mean — characteristic of the position (stable to outliers)

4 Median med — robust characteristic of the position (but less precise)

¢ Variance ¢, s? - the characteristic of the scale (squared)

4 Standard deviation g, s — the characteristic of the scale (linear)

4 Inter-quartile range IRQ — robust characteristic of the scale (but less precise)

4 Correlation r — characteristic of linear dependency of 2 data sets
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€ Random variables can be discrete or continues.

Probability function: Probability density function:

©

0.6
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1 2 3

Variable x Variable x

Probability
Probability density

0 02 04 06 08 1 12 14

Examples of distributions for continues

< Uniform: f(x,a,b) ¢ Normal (Gaussian): f(x,x,0) ¢ Exponential: f(x,4)
f (X ) ~ 99.7% - f(X) 639,
| ———— 95.46% ————> 1 .
< 68.3% —> “ \ 86%

A N N

a b u-3c {l u-lo u u+le ﬁl u+3o * H 24



crP.! METHODS AND APPLICATIONS

Detection of outliers

Chebyshev 's theorem

4 For any kind of distribution at least 1-z -2 of the data values must be within

r z standard deviations from the mean (1 £ zg), where z is any number > 1.

¢ At least 75% of data have z-score < 2
¢ At least 89% of data have z-score < 3
¢ At least 94% of data have z-score < 4
¢ At least 96% of data have z-score <5

Number of cells

503

516

529

529

507

589

947

515

490

484

491

154

215

536

508

532

546

572

517

499

455

558

552

462

554

469

500

588

516

485

506

507

523

567

533

512

529

534

523

581

543

o177

573

526

471

478

495

517

473

548

“Rule of thumb ":

Example

"N

If |z;] > 3 (for symmetrical distr.)
or |z;| > 5 (for skewed distr.)
then x; is an outlier .

Z-Score

-0.08

0.10f 0.27] 0.27]-0.02

1.07

0.51] 0.08]-0.25]-0.33

-0.24

-4.73]-3.92] 0.36]-0.01

0.31

0.49] 0.84] 0.11}-0.12

-0.72

0.66] 0.58]-0.62] 0.61

-0.53

-0.11] 1.05| 0.09]-0.32

-0.04

-0.02] 0.19] 0.78] 0.32

0.04

0.27] 0.34] 0.19| 0.97

0.46

0.91] 0.86] 0.24]-0.51

-0.41

-0.18] 0.12]-0.48] 0.53
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INTERVAL ESTIMATIONS

Interval estimations for mean and proportion

L

4 lllustration of the central limit theorem.

POPULATION SAMPLE Population I Population II Population 111
02 — variance s? — variance Population
N —_ number Of elements n — number Of Distribution
(usually N=w) elements —t M ! .
Values of x Values of x Values of x
. . S lin
If x is a random variable, then m and s are m;’l'ﬁﬁfﬁﬁn ‘/\ ‘[\/\_’\ ”\\‘
random variables too. - o L . ‘
Values of ¥ Values of © Values of ¥
Central Limit Theorem: | |77 0T
Sampling
The distribution of the sample mean tends to pistribution ‘ /\ l /\ V\
the normal distribution, when the sample (n=35) M- S —
. . Values of & Values of ¥ Values of ¥
size n increases. | 0 01
In practice if the sample size is >30, the normal | (\ ﬂ
distribution is a good approximation for the -
ey . . . ampling
sample mean for any initial distribution. Distefbation
ofx
(n = 30)

NOTE: here and below X will be used together with m as a
sample mean.

Values of ©

Values of ¥

Values of ¥
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Statistics used for means and proportions

¢ In the case of known population variance ¢? (rare!): z-statistics (Gaussian)
# In the case of unknown population variance: t-statistics (Student’s)

4 Population proportion: z-statistics

Z distribution (standard normal)

t distribution (20 degr. of freedom)

I distribution (10 degr. of freedom)
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Population mean

# Interval estimation for the population mean

Let us define a as “error probability”, then 1-a is called
confidence interval. For example let a=0.05

m=#iea,2| & ﬂ=miea,2|

In the case of unknown & the interval is defined as:

H—¢€,, H HTe,,

An example in Excel
1.42)1233 {njgg%)z o.37elssz m = AVERAGE (A2:A7)
1.748418
1.081124 e = TINV(0.05,6-1)*STDEV(A2:A7)/SQRT(n)
1.112433 N T
1.085844 /
1.433279

a

degree of NOTE: there is a value in
freedom =n -1 TINV instead a/2.
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Population proportion

¢ Interval estimation for the population proportion ( ™

Again a is “error probability”, 1-a is confidence interval. Let a=0.05

1= Piea,zl

Usually z-statistics is used. But the requirement must be obeyed — {

P(l-P)

nP>5
n(l-P)>5

[N=Px za,z\/

# [_DATA n 48] Example in Excel

; é é 8 p(1) | 0.5625|

?1 é i 8 e -0.14| data

5 [0]1]1 l

6 [1]0o]1 v

; i 2 (1) P = COUNTIF(F6:H21,"=1")/n

 ECE e =NORMINV(0.025,0,1)*SQRT(P*(1-P)/n)

11 [1]1]1

12 [1]o]o /

13 [ofo]o

ig 2 i ti'J al2 NOTE: there is a/2 value in
16 [1]1]1 NORMINV !
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Hypothesis about population mean

¢ Standard hypotheses look like:

Lower Tall Upper Talil Two Tail
Ho' 12 Mo Ho' 1< Mo
Hal M < Ho Hal M > g

Mo H ‘ Mo H ‘ Mo H

-t a 0 0 ta -ta/2 0 ta'/2
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Hypothesis about population mean

Lower Tall 4 (1) Build a proper statistics
Ho: 12 My m-
t’ 7= —ljo

Ha: 1<l S
4 (2) Check the position of t with respectto t, a

OR .

t 0
4 (2) Calculate p-value (area) using inverse distribution !
(3) 2 possible situations:

4 p-value 2 a 4 p-value < a

p-value

p-value

_ta t t _ta

The null-hypothesis H, can be rejected

The null-hypothesis H, cannot be rejected
P 0 J with 1-a confidence
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Excel example: hypothesis about population mean

4 Number of living cells in 5 wells under some conditions
are given in the table, with average value of 4705. In a

reference literature source authors clamed a mean guantity

of 5000 living cells under the same conditions.

4 Question: is our experiment significantly different from
the one performed in a reference article?

4 Solution
Lower Tail f= M7 _ 47048-5000_ _ 161
Hy: K2 5000 = 20
H_: p <5000

p-value = a

The null-hypothesis H, cannot be rejected: no significant
difference between reference and actual experiments

# well | Living cells
1 5128 m= 4704.8
2 4806 s= 409.49
3 5037
4 4231
5 4322
X
5128 m= 4704.8
4806 s= 409.4871
5037 muO= 5000
4231 t= -1.61199
4322 p-value= 0.091129

m = AVERAGE(A2:A6)
s = STDEV(A2:A6)

U, = 5000
t = (M- Yy)/s*SQRT(5)

p-value = TDIST(ABS(t);5-1;1)
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Testing hypothesis about means of two population

4 One way to compare means: 4 And another ... :
Two Tail Excel — Tools — Data Analysis
Ho: Yy - 1y, =0 Select for example t-Test for unequal variances
H, M, - 1, 70 A | B
1520] 2102
Distributions Distribution 1231) 1867
of m; and m, of m;-m, 1425|1625

t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2

Mean 1392 1864.667
Variance 21697 56886.33
Observations 3 3
Hypothesized Mes 0
df 3
t Stat -2.920454

P(T<=t) one-tail 0.030737) <0.05

t Critical one-tall 2.353363

P(T<=t) two-tail 0.061474| > 0.05

t Critical two-tall 3.182446

NOTE: other (one tail) hypothesis can be applied as well, depending on the question.
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Non-parametric method: U -test

Wilcoxon rank-sum test, also known as ‘Mann-Whitney U’ checks whether data for two

sets come from the same distribution.

® Non-parametric methods do not put restrictions on the distribution of the data.

& Specifically the U-test can be used for ordinal data (e.g. “G”, “S”, “B” medals in sport)

& Robust to outliers

¢ Attention: U-test compares distributions, not specifically medians (as addressed usually)

Example in R

R programming language originally
was developed to solve statistical
tasks, it has much wider possibilities
and consistency in comparison to
Excel Data Analysis.

Let us apply U-test to the same data
as t-test: AT B

1520( 2102
1231|1867
1425|1625

> x1=c(1520,1231,1425)

> x2=c(2102,1867,1625)

> wilcox.test(x1,x2)
Wilcoxon rank sum test

data: x1 and x2

W =0, p-value =[0.1]

alternative hypothesis: true location shift is not equal to 0

> wilcox.test(x1,x2, alternative="less")
Wilcoxon rank sum test
data: x1 and x2
W = 0, p-value =(0.05
alternative hypothesis: true location shift is less than 0
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Interval estimation for the sample variance,  x? statistics

SAMPLE With 2 degrees of freedom

POPULATION

m, X — mean With 5 degrees of freedom
s2 — variance
n — number of

elements

1 —mean
&2 — variance
N —number of elements
(usually N=<)

With 10 degrees of freedom

Probatility density function

If x is a random variable, then s? is a random 0 “
variable too. The interval estimation for it is

build using chi-square statistics (¥?). Example in Excel

4.38 m= 2.854241
2.18 s= 0.728399
2.21 s2= 0.530565
3.29 min_s2=  0.30685
2.50 max_s2= 1.131839
2.85
2.67
2.30
4.06

326 || m = AVERAGE(A2:A21)

1.83

> || s=STDEV(A2:A21)
2% || s2 = VAR(A2:A21)

posnible o alue 39 || min_s2 = 19*VAR(A2:A21)/CHIINV(0.025:19)
2.79

27 || max_s? = 19*VAR(A2:A21)/CHIINV(0.975;19)

s 2.56

0 x 29';'5 A 2025



TEST OF GOODNESS OF FIT

Application of )2 statistics for model testing

4 The proportions for 3 “classes” of patients
with and without treatment are:

Control

Experimental

nezoo‘ n,=100

Are the proportions significantly different
in control and experimental groups?

 Build the model of the distribution and calculate
expected frequencies using control group of patients.
Each expected frequency must be = 5.

Category | Control Distrib. | Expected | Experim.
frequenc. model freq., e freq.,f
A 28 0.28 56 42
B 34 0.34 68 64
C 38 0.38 76 94
1 200 200

4 Goodness of fit hypothesis is
always one tail!

Model fits to the

experiment
05

x2 degree of freedom = k-1

Category | (f-e)2/e
A 3.500
B 0.235
C 4.263
Chi2 7.998
0.01833

Chi2 = SUM(...)
p-value = CHIDIST(Chi2;2)

# Exactly the same approach can be applied for
testing the independence. Difference: expected
frequencies are calculated on all the data, instead
of “control set”.
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HYPOTHESIS TESTING

Hypothesis testing for variances, F  -statistics

# The ratio of the sample variances is called
F-statistics.

¢ As opposed to t and }? it is has 2 degrees of
freedom, called numerator and denominator
degrees of freedom.

F numerator d.f.= n;-1
F denominator d.f.= n,-1

4 Note: For the consistency the maximal s is
put to numerator. Then F >1.

x1 X2
3.50 2.18
4.11 3.24
1.78 3.01
4.07 1.95
3.18 2.72
4.05 3.08
2.07 2.59
4.69 1.93
1.99 3.15
2.45 3.09
x1 X2
3.50 2.18
411 3.24
1.78 3.01
4.07 1.95
3.18 2.72
4.05 3.08
2.07 2.59
4.69 1.93
1.99 3.15
2.45 3.09

s2_1= 1.104897
s2 2= 0.257265

F= 4.294772

pvalve=

FTEST

p-value= | 0.040907

F.

Example in Excel

s,2 = VAR(A2:A10)

s,2 = VAR(B2:B10)

F=MAX(s;?, $,2)/MIN(s,?, S,7)
p-valuel = FDIST(F;9;9)

p-value2 = FTEST(A2:A11;B2:B11)
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4 The behaviour of a cell line is studied,
being affected by several factors (e.g. con-
centration, time of treatment, temperature).

Concentration

Time| 0.1 0.2 0.5 1 2
1 121.11 23.74 22.19 24.45 24.32
2 |24.02 25.19 25.44 26.59 27.43
5 |25.43 25.58 25.30 24.74 28.59
10 |22.48 22.84 24.01 26.04 26.60
30 |25.77 26.52 25.43 25.39 30.75
60 |28.76 31.08 28.97 28.74 34.96

Which of the factors effect the behavior more
and are more important?

ANOVA

ANOVA:. first glance

The answer to this question can be given by the
Analysis of Variance (ANOVA).

There are several explanation how does ANOVA works.
The one related to within/between treatment distributions is

given below.

Assume that we have data recorded under 3 effects or treatments (red or green or blue)

¢ No significant effect.

ANOQOVA uses F statistics:

2 ~ 2
S between S within Szbetween

€ Presence of a significant effect.

2
> S%ithin
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Application
& The behaviour of a cell line is studied, ¢ If the number of factors is 1 or 2, Excel is an
being affected by several factors (e.g. con- excellent tool for ANOVA.

centration, time of treatment, temperature). _
¢ For more complex analysis (3 and more factors)

Concentration

Time| 01 02 05 1_ 2 other software tools should be used, including R and
1 21.11 23.74 22.19 24.45 24.32
2 |24.02 25.19 25.44 26.59 27.43 Partek®_

5 ]25.43 25.58 25.30 24.74 28.59
10 |22.48 22.84 24.01 26.04 26.60

28 gg:;; gigg gg:g? ;Z:?Z 32;2 Anova: Two-Factor Without Replication
SUMMARY Count Sum Average Variance
Which of the factors effect the behavior more Row 1 5 11581 23.162 2.12237
and are more wnportant') Row 2 5 128.67 25.734 1.73233
Row 3 5 129.64 25.928 2.31527
Row 4 5 121.97 24.394  3.45038
Row 5 5 133.86 26.772 5.15072
Row 6 5 152.51 30.502 7.17352
] Column 1 6  147.57 24595 7.27483
Sources in variation Column 2 6 154.95 25.825 8.36375
6 Column 3 6 151.34 25.22333 4.961267
Column 4 6 155.95 25.99167 2.443817
S Column 5 6 172.65 28.775 13.71515
4 -
3 ANOVA
2 Source of Variation SS df MS F P-value F crit
1 Rows 157.6653 5 31.53306 24.13668 7.77E-08 2.71089
. Columns 61.64961 4 154124 11.79728 4.38E-05 2.866081
0 w w Error 26.12875 20 1.306437
Rows Columns Error
Total 245.4437
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REGRESSION

Simple linear regression

Temper. | Effect

700

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

236
300
301
290
305
329
398
344
414
476
417
441
463
462
456
577
526
557
639
628
585

600 -

500 A

400 -

300 A

Effect (dependent variable)

200 A

100

15

25 35
Temperature (independent variable)

45

4 Building a regression means finding and
tuning the model to explain the behaviour
of the data

¢ Model for a simple linear regression:

y(X) = Bx+ [, +5I

&

y(X) =b1X+b0I

® b, and b, are random variables estimating £, and £,. Interval estimations
can be written for them.

Multiple linear regression

YO, X) = B+t BX + [ +5I

4 Linear regression (simple and multiple) is equivalent of ANOVA!

See the example: |
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4 Use Excel — Tools — Data Analysis — Regression.

AN TE

Temper. | Effect

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

236
300
301
290
305
329
398
344
414
476
417
441
463
462
456
577
526
557
639
628
585

REGRESSION

Simple linear regression in Excel

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.933651166
R Square 0.871704499
Adjusted R Square  0.864952105

500

400 -
300 +
200
100 A

v/ MS

Standard Error 40.80172755 0 —
Observations 21 Regression Residual
ANOVA /

df SS MS F Significance F
Regression 1  214915.9095 214916 129.09561  6.48154E-10
Residual 19 31630.83845 1664.78
Total 20  246546.7479

Coefficients  Standard Error t Stat P-value Lower 95% Upper 95%

Intercept -64.38300759  45.00136856 -1.4307 0.1687608 -158.5719543 29.80593909
X Variable 1 16.70663254  1.470392196 11.362 6.482E-10 13.62906631 19.78419877

700

Effect (dependent variable)

200 A

600 -

500 -

400 +

300 A

100

15

25
Temperature (independent variable)

X Variable 1 Residual Plot
80
*
60 +
40 + .
o 20+ . s ‘e ¢
C_U | @ & & &
> 0 * T o7 Py
] . .
@ 2015 25 35
X -40 + .
_60 —+ *
-80 + .
a5 -100
X Variable 1

Residuals

X Variable 1 Residual Plot

X Variable 1
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PCA basics

# Principal component analysis (PCA) is a vector space transform often used to
reduce multidimensional data sets to lower dimensions for analysis. It selects the
coordinates along which the variation of the data is bigger.

4 Example for 2D case: for the simplicity let us consider 2 parametric situation both in
terms of data and resulting PCA.

Scatter plot in Scatter plot in PC
“natural” coordinates
= |
= | ®
(QV o [ b ®)
@ El._ 0% o @0 |50 ° -
o Q @ O
] o () e o ' @ @)
8 2 .
© c | O
> S
(0]
n
Variable 1 First component

4 Instead of using 2 “natural” parameters for the classification, we can use the first
component!
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PCA Iin Partek Genomic Suite
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# Transcriptomic profile of a sample contains thousands of genes, i.e. thousands
of coordinates/parameters.

® PCA is extremely useful for initial data analysis in transcriptomics, as it allows to depict
thousands of parameters just in 2 or 3 dimension space.

PCA Mapping {53.5%)

* N 3 factors can influence
- \ the distribution of the
variability:
- Substance

- Manip (bio replicate)

- Dye swap

o
PC#124.7%
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An example of correction of the batch -effect

4 Normalization can be considered as a correction for unwanted and artificial effects,
e.g. batch effect, day effect, mood effect © ®.

# If effects are believed to be linear, the normalization can be performed using ANOVA
or (equivalently) multiple regression.

V(% %) = B B o + & B Y (%) =YX, %) -bx,=Bx + B +&

00




